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VIBRATION ANALYSIS 

VIBRATION RESPONSES OF SIMPLE CURVED 

PANELS TO HIGH-INTENSITY RANDOM AND 

DISCRETE FREQUENCY NOISE 

Carl  E. Rucker 
NASA Langley Resej-ch Center 
Langley Station,  Hampton, Va. 

Unexpectedly short times-to-failure for curved panels under acoustic 
loading led to detailed studies of their dynamic response characteris- 
tics to determine the reasons for such short times-to-failm-e.   Non- 
linear response characteristics involving significant low-fiequency 
motions due to buckling were observed.   Such behavior resulted in a 
much higher percentage of large strain amplitudes than would have 
been predicted for a normal strain amplitude distribution.   The acqui- 
sition of joint strain-sound pressure distributions for significant time 
durations was facilitated by tht   .se of a pulse height analyzer which 
digitized, classified, stored, and displayed large amounts of information. 

INTRODUCTION 

The responses of aircraft or spacecraft 
structures to complex noise inputs involve such 
important variables as the structural materials, 
the fabrication techniques, and the related envi- 
ronmental conditions.  Analytical procedures, 
generally, have not been adequate for predicting 
such responses, and hence, much reliance has 
been placed on experiments. 

As part of a series of basic research 
studies of panel responses to noise, the effects 
of panel curvature have been documented.  This 
paper has two purposes:  (1) to present some of 
the recent panel test analysis results, and (2) 
to describe briefly a unique method of collect- 
ing statistical data. 
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Fig. 1. Time-to-failure for 0.020-inch- 
thick aluminum-alloy panels of three cur- 
vatures in a random noise field having an 
overall sound-pressure level of 160 db 

SONIC  KATIGUE FAILURES 

Sonic fatigue data are shown in Fig. 1 for 
three different panel curvatures for compari- 
son.  Root-mean-square strain for a strain 
gage near the panel edge is plotted as a function 
of time-to-failure in minutes.  The excitation 
was a broadband random noise from an air jet. 

Its overall sound pressure level was 155 db and 
the spectrum peaked sharply at about 100 Hz 
(see Refs. 1 and 2). Identical 20- by 20-inch 
sheets of mater'"1 were formed to curved fix- 
tures with lap attachments,  A&N bolts (3/16- 
inch diam.) with nuts tightened to a given torque 
were spaced around the periphery, 5/16 inch in 
from the edge and 1-1/2 incline on center. 



TU» was done in k. attempt to minimize the 
edge-attachment condition differences for the 
test panels. 

One of the main results of the above study 
was the relatively short time-to-failure of the 
4-foot-radius panels even though the measured 
strain levels were markedly lower than for the 
other curvatures. It was originally suggested 
that significantly different stress concentration 
factors may have existed. This paper, however, 
contains results of other studies relating to the 
dynamic behavior of the 4-foot-radius panel 
and which may also be significant in causing 
shorter times-to-failure. 

figure 2 shows a panel which failed due to 
sonic fatigue while formed into a 4-foot-radius 
configuration. It is believed that this failure 
resulted from test conditions for which the 
panel was buckled.  Since buckling is a strong 
indicator of nonlinear behavior, the panel re- 
sponse was studied for other evidence of non- 
linearities. 

STRAIN RESPONSES 

A series of dynamic response studies in- 
volving different intensities of acoustic loading 
were conducted, and some representative re- 
sults are presented in Fig. 3. Overall root- 
mean-square strains are plotted as a function 
of discrete driving frequency for sound- 
pressure levels of 115 and 125 db impinging on 
the lower surface of the panel. At the lower 
excitation level, the panel appeared to be re- 
sponding generally as a linear system. At the 
higher level, however, there was definite evi- 
dence of nonlinear response.  The skewness of 

the response peaks toward lower frequencies 
represents a soft spring effect; that is, the 
panel b .^mes less stiff at large vibration 
amplitudes. 

The mode shape sketches in Fig. 3 illus- 
trate qualitatively the modal pattern variation 
foi these two levels of excitation. The sketch 
at the top suggests a buckling condition such 
that the center portion of the panel experiences 
relatively large amplitude motions at frequen- 
cies other than the driving frequency. 

Both analytical and experimental studies 
have been made for the modal response of this 
panel, and the results are presented in Fig. 4. 
Frequency in Hz is shown for various modal 
numbers (number of antinodes). Theoretical 
calculations assuming both clamped and simply 
supported boundary conditions (Ref. 3) are rep- 
resented by the solid and dashed curves, re- 
spectively. Experimental data obtained using 
discrete frequency excitation are represented 
by the circle points. They seem to fall close to 
the simpxy supported values at low modal num- 
bers and close to the clamped values at high 
modal numbers. Note that the frequency for the 
fundamental mode corresponds closely to that 
of the sixth mode. As indicated in Fig. 3, the 
sixth mode was excited at a level of about 115 
db, whereas at a 120-db level, and higher, the 
panel snapped into a buckled condition for which 
the fundamental and sixth modes are superim- 
posed (see upper sketch of Fig. 3). 

Additional panel response data for high 
levels of noise excitation are presented in Figs. 
5 and 6. In Fig. 5 the mean square bending 
strains are shown as a function of frequency. 
The discrete frequency excitation (at a 145-db 

Fig. 2.    Aluminum-alloy panel (0.020-ineh thick, 4-foot radlu«) 
after sonic fatigue failure due to siren excitation 
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Fig. 3. Overall strain responses of a panel 
(4-foot radius) as a function of driving fre- 
quency for two different levels of discrete 
frequency excitation 

340 

600 

500 

400 

«a-   soo 

200 

K» 

0 

iaräu™, 

I 3 

MODAL  NUMBER 

Fig. 4. Sonne modal responses of curved 
aluminum panel (4-foot radius) excited by 
discrete frequency noise 

10« 

w» 

RM/V VJ 
2l   0 

-EXClTATOt* FREQUENCY 

S'^v^ 
200 400        eoo 

FREQUENCY, Hi 
800 1000 

Fig. 5. Spectrum of bending strain re- 
sponse of curved panel (4-foot radius) 
due to discrete frequency excitation at 
145-db sound-pressure level 
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Fig. 6. Bending strain response spec- 
trum of a panel (4-foot radius) due to 
random noise input from a four-branch 
airjet noise source 
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level) was provided by a siren for which the 
harmonic content waa at least 40 db lower in 
level than the excitation frequency of the figure. 
The data shown were obtained by means of a 
IS-second tape loop and narrow-band filters. 
Note that relatively strong responses of the 
panel occur at frequencies lower than the excit- 
ing frequency. 

The response of the panel to broadband 
noise is shown in Fig. 6. Again, mean-square 
bending strain per unit bandwidth is plotted as 
a function of frequency. The spectrum shape of 
the ISO-db level random noise is shown at the 
top. Note that this nearly flat random noise 
spectrum was generated by a unique jet turbu- 
lator nozzle represented by the sketch at the 
right. A number of relatively strong responses 
are observed at the low frequencies, even in 
the range where the input spectrum tends to 
drop off. These latter response data are thus 
consistent with those of Fig. 5. 

AMPLITUDE DISTRIBUTIONS 

In order to study the statistical behavior of 
the panel, a unique method was used to collect 
and analyze appropriate sound pressure and 
associated strain data.  Figures 7 and 8 illus- 
trate the method used, and Fig. 9 contains the 
main results. 

Included in Fig. 7 are schematic represen- 
tations of the root-mean-square sound pressure 
and total panel strain time histories.  In the 
course of this study the amplitude distributions 
were obtained at several arbitrary input noise 
loading levels. Such a procedure could be ac- 
complished by the reading of oscillograph rec- 
ords at the proper times, as indicated 
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Fig. 7. Time histories of the root-mean- 
square sound pressure and associated 
total panel strain. Vertical dashed lines 
indicate points at which strain values 
were determined for an arbitrary sound- 
pressure load value. 

Fig. 8. Enlarged sectional view of oscil- 
loscope display of a pulse-height analyzer 
used for accumulation of joint probability 
data 

schematically in Fig. 7. In order to automate 
the process of accumulating data of this type, 
however, a pulse-height analyzer wts used in 
the manner suggested by the diagrams of Fig. 8. 
Records such as those of Fig. 7 were digitized 
about 300 times per second for their 80-minute 
durations (time-to-failure of the panel). The 
analyzer operates in such a way that all strain 
values associated with a given sound pressure 
are grouped together. Thus, it is possible to 
determine amplitude distribution directly from 
the analyzer. 

Such a display is illustrated in Fig. 8 which 
contains a cathode ray oscilloscope presenta- 
tion of the strain and sound-pressurs data. The 
abscissa represents panel strain, the zero value 
being in the center and the negative and positive 
values being to the left and right, respectively. 
The ordinate is root-mean-square sound pres- 
sure; the vertical coordinate represents the 
number of measurements for given values of 
sound pressure and panel strain. Thus, at a 
given sound-pressure value, the display indi- 
cates the number of strain samples at each 
strain value for the entire time of the data re- 
cording. The type of display illustrated in the 
figure is useful qualitatively, but the numerical 
data are obtained directly from the tabulation 
circuits. 

Sample strain amplitude distribution data, 
as measured with the pulse-height analyzer, 
are presented in Fig. 9 for the 4-foot-radius 
panel. The distribution shown is for a sound- 
pressure level of 157 db and contains over 
79,000 samples. Also shown is a solid curve 
representing a normal or gaussian distribution. 
The probability of being equal to or less than a 
given value of strain is plotted on the vertical 
scale for various multiples of standard devia- 
tion (a).   It can be seen that the measured data 
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Fig. 9. Total strain amplitude distribution for 
a panel (4-foot radius) due to random noise 
loading compared to a normal distribution 

generally follow the normal distribution curve 
up to nearly 2a and then deviate from the nor- 
mal distribution curve at higher values. This 
result implies that a greater percentage of the 
panel lifetime is spent at strain values above 
3a than would be the case for a normal distri- 
bution of strain amplitudes. Although not shown 
on the figure, similar data for the other two 
panel curvatures of Fig. 1 fell generally along 
the gaussian curve at the higher a values. The 
implication from these data is that the 4-foot 
curvature panel, probably because of its non- 
linear behavior characteristics, experienced an 
abnormally high number of high strain values. 

These strain peaks may account for the shorter 
time-to-failure of these panels. 

CONCLUDING REMARKS 

Unexpectedly short times-to-fallure for 
curved panels under acoustic loading led to de- 
tailed studies of their dynamic response char- 
acteristics. Nonlinear response characteristics 
involving significant low-frequency motions due 
to buckling were observed. Such behavior re- 
sulted in a much higher percentage of large 
strain amplitudes than would have been predicted 
for a normal strain amplitude distribution. 
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DISCUSSION 

S. Davis (Fairchild Hiller): Can you teU 
me where the strain gage was located and why 
the particular location was chosen ? Obviously, 
the strain measurement you take would vary at 
different locations on the panel depending upon 
the particular mode shape being excited. 

G. Brooks (NASA) (for C. E. Rucker): Well, 
of course, quite a study went into determining 

the best locations for these gages. They had 
strain gages located on all four edges out about 
1/2 inch from the bolt line. In addition to this 
there were also strain gage bridges located 
near the center of the panel in some cases. 
These strain gage locations were selected on 
the basis of the experience of the survey of the 
panels to find out where the strains were usu- 
ally the largest. 
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J. Rlc« (Goochrear Agroggtcg Corp.): Was 
your acouftic excitation noriBäl, grazing, or in 
a reverberant room? 

G. Brook«; It was normal. The acoustic 
excitation was provided by a horn which was 
placed below the panel so that the panels were 
excited from the bottom, or th* center of the 
radius of curvature. 
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RANDOM VIBRATION USING FINITE ELEMENT APPROACH 

K. K. Kapur, Ching-U Ip, and E. P. Howard 
Aerospace Corporation 

San Bernardino, California 

The finite element method of structural analysis is extended to deter- 
mine the response of complex structures to multiple random loadings. 
The method is used to calculate the output power spectral densities and 
mean square values of deflections and internal forces.   The method is 
illustrated by a number of examples. 

INTRODUCTION 

The finite element method is one of the 
most effective tools for analyzing static and 
dynamic problems in structural mechanics, and 
many authors [1-5] have contributed to its de- 
velopment.  The approach has been used for vi- 
brations [6], acoustics [7], seepage [8], heat 
conduction [9], wave propagation [10], and sta- 
bility [11] problems. In this paper, a consistent 
matrix formulation for the response of any 
structure to multiple random loads is presented 
using this approach. 

Using exact mathematical formulation, 
several authors Vive discussed the response of 
linear elastic systems to various types of ran- 
dom excitations [12,13]. Because of the diffi- 
culties encountered in analyzing multiple ran- 
dom inputs using exact differential equations, 
most authors have analyzed beam and plate 
random vibration problems due to single ran- 
dom inputs or completely uncorrelated inputs 
[14-16]. The results are of academic interest 
and have some application to physical problems. 
The difficulties encountered in analyzing the 
response of a structure to multiple random ex- 
citation can be overcome, however, if the 
structure is divided into finite elements, thus 
reducing a continuous structure with infinite 
degrees of freedom to a structure with a finite 
number of degrees of freedom. The method 
used is illustrated by several examples. 

It is assumed throughout that the random 
process is stationary and ergodic. 

DEVELOPMENT OF BASIC THEORY 

The general procedure of the finite element 
method is used to divide the total structure into 
a number of elements. These elements are 
connected at their corners or nodal points. 
When a typical three-dimensional element n is 
being considered, the displacements are given 
by 

ij(x,y,z,t) =  A(x,y,2)^(1) (1) 

where the elements cf u are components of the 
displacement vector and A is a transformation 
matrix giving displacements u in terms of v,,, 
the generalized coordinates or ncK*%l displace- 
ments for the nth element. The kinetic energy, 
T, the strain energy, u, and the dissipation 
function, F, can be written as 

l = 1/2 

1/2   j"  mu'u dv , 
Jy 

Jl'   Z  dv ■ 

and 

F =  1/2 Jcu'u d» 

These can also be written as 

T =  1/2 v *!!  v   , 1       " * -n _n -n ' 

U =   1/2 v'l   v —n =n -^n ' 



If B^' " ~,,s%i''L". 

and 

where 

in 

r = 1/2 i,1 £. L 

r    j* n A* A dv . 

=    f I* B i dv . 

and 

Cn jT c»-4 dv = - lln . n —n 

Here, Kx.y, t) is a transformation matrix giv- 
ing strains in terms of v,,, and the D matrix 
consists of appropriate material constants giv- 
ing stresses in terms of strains. The mass 
matrix M for the assembled structure can be 
obtained by applying the Boolean transformation 
of Ref. 1 in the form 

(2) 

Thus, 

Similarly, 

and 

M =  a1 ma . 

K =  a^a 

C  =   8*0 8 

where m, k, and c are diagonal matrices, the 
nth elements of which are the matrices Mn, Kn, 
and Cn, respectively. When the generalized 
forces corresponding to the generalized dis- 
placements r are denoted by R, the equations 
of motion for the complete structure can be 
written as 

Mr + Kr + Cf = R. (3) 

The displacements r can be expressed in terms 
of the normal coordinates q as 

r =  0 q( t ) , (4) 

where * is a matrix of normal modes. By sub- 
stituting (4) in (3) and premultiplying by *', 

where 

(5) 

and 

IK'J = ** I *. 

The response of the above system to a sinusoi- 
dal loading i = Ro e'*1 can now be found. By 
using the notation 

Wn  --   «n2. C;/V^X   =   24n , 

the equations of motion are of the form 

q+   (2Cnwn]3+   [«n
,]q=   lHn]-1 f ^ e4«« 

Therefore, 

q=   [Zn(v.)]-' 0«  Ro e*- 

where 

Zn(*)  =   Mn(-w2  +wn   + 2^n % *) 

=  li;(-*J+ w^ + cw/mi) , 

(6) 

(7) 

(8) 

and is known as the impedance matrix for the 
normal coordinates.  Finally, the displacements 
r can be written as 

where 

r =  0[Zn]-' ^^e1"* 

H(w) ^e4 

H(w) =  0[Zn(w)J-1 #« 

(9) 

(10) 

and is known as the matrix of complex response 
functions. The complex response function 
Hij(*), which is the ij element of H(w), is 
defined as the displacement produced at i due 
to a unit force at j having the same direction 
as eivt.   Equation (10) may also be written in 
terms of the frequency f (in cycles per second). 
Thus, 

H(f) = ^IZjf)]*1 (H) 

where 

2n(f)=   *'2Mn(-f
,t  fn+2i4nfnf).        (12) 

If the forces R are random, the cross- 
correlation matrix RR (On   may be defined as 



1 fT/2 

RKK (T)       Um  i R(t) RVttr) dt 
1    ' T -• "      J-T/l 

-- <Il(t) RHt-T)), (13) 

where < > represents the time average. 

The i. j element of R^R   matrix gives the 
cross-correlation the loadings R; and Rj for 
i \ j and the autocorrelation function otherwise. 
The input power spectral density matrix SjCf) 
of the excitation forces R is defined as 

Sl(f)--   2   ("RRiR(r)e-iJ-"dT.       (14) 

The output power spectral density matrix so( f) 
of the response displacements r can similarly 
be written as 

SoCO =   2 
/>.., 

(r) e-"'''T,  dT (15) 

where 

lim   = 
T -• « J.j,; 

Rr   r   (r)   -   jim   ^   I r(t)   r,(t + T)dt 
'2 

r(t)  r'Ct ♦ T)> (16) 

Denoting by h( t) the matrix of impulse re- 
sponse functions, the i, j element of which 
gives the response at i due to a unit impulse 
at j, the displacements r(t) can be written as 

r(t) h(0 R(t -T)dT • (17) 
■'o 

By substituting this value in Eq. (16), 

-'o ^o   I- 
«r   r   (r) '    ) 

'(t fT-e.ph'ce.) 

or 

*,   r  (T) [h(«,)iBi 
a   •'o     '■ 

«  h'CSj) dSj dB, 

R   (^».-»j) 

(18) 

By substituting this value of Rr r (r) in Eq. (IS), 

/./""[n'«'-"-'' l,(t)=  2 

• '»♦(ö,) d«, dBJdr 

(rf«,-©,) 

2rh(ei)e
i2-fT 

•'A 

S».R   (T+«l-*2)e 
UnfCT»«,-»,)     1 

r03 

h'(ea) e* 
jffe. 

d«, 

H^f) «    2 j    E».H.(T)e"i,"fT   *•   H(f) 

H'(f) SI(f)H(f) (19a) 

where H*(f) is the complex conjugate of H(f). 
Similarly, 

§,(»-) =  H'Cw) S,(w) H(w) . (19b) 

The diagonal elements of the matrix §„( f) give 
the spectral densities of the responses, while 
the off-diagonal elements give the cross- 
spectral densities of the responses. The mean 
square of the ith response rj can be obtained 
from the i i element of the matrix §,,( f). Thus, 

<r i2(t)> =      Soii(f)df =      SoU(.)dw. (20) 
■'o ■'o 

It is clear from Eq. (20) that 

Soii(f) =   2"Soii(*)- 

Numerically, the integrations in Eq. (20) can be 
performed by calculating Soi,(w) at various 
values of w and then applying the trapezoidal 
formula for area calculation. 

For manipulations on an electronic com- 
puter, Eq. (19) can be written in a slightly dif- 
ferent form by decomposing S,(f) into real and 
imaginary parts.  Let 

§,({) = E+ '?' (21) 



«ku« g Is • STOUMtric matrix and 3' is s 
symmetric matrix. Also, 1st 

or 

where 

and 

»„-'W/W [(f„,-^),+ <n,^,^]• 
Than, 

and 

!*(»)= *!„*' - i^Bn*'• (23) 

By substituting Eqs, (21) through (23) in Eq. 
(It), the real part of so(f) is determined as 

' Hat* 3' t^nf +  ^Bn*' P^Dn*' •    (24) 

Similarly, the imaginary part of s0(f > is 

+  *|f|*
tp*Pn*

t  ♦  ^Bn^'s'^Bn*' •      ^25) 

If required, the mean square values of the 
internal forces in the structure can also be ob- 
tained. The internal forces P can be written as 

or 
p = Ijy 

P      k« r 

(26) 

The complete cross-correlation matrix for the 
output forces P is given by 

tm P   =   <?(«) E,(t + T)> 

'   i 

= k§ <r(t)r,(t + T)>S«k» (27) 

Similarly to Eq. (19), the output power spectnJ 
density matrix Sp0(f) for the forces P can be 
shown to be given by 

Spo(f)= k •§,(£) ««k* (28) 

To calculate the mean square values of the 
forces, only the real part of the output power 
spectral density matrix s^f) for the general- 
ized displacements r, given by Eq. (24), should 
be substituted in Eq. (28). 

An automatic computer program was set 
up to calculate the output power spectral densi- 
ties and mean square values of the displace- 
ments and internal forces from the initial data 
in its simplest form. The program has the op- 
tion of either automatically generating the stiff- 
ness, mass, and damping matrices or obtaining 
these as input data. A set of spectral matrices 
and their associated frequencies to describe 
the power and cross-spectral density functions 
is required as input. The program calculates 
the natural frequencies, mode shapes, and cut- 
put power spectral densities at the desired fre- 
que   'es. In addition, it performs numerical 
integration to obtain the mean square values of 
displacements or internal for :e8. Equations 
(24) and (25) are used to calc ilate the real and 
imaginary parts of the output power spectral 
density matrix se.  If only the mean square 
values of the responses are desired, then only 
the real part of the matrix so is computed. 

TYPICAL EXAMPLES AND RESULTS 

A few typical cases have been solved here 
to show the accuracy obtained using the finite 
element approach as well as to demonstrate its 
versatility. In all cases the damping coefficient, 
c, is assumed to be equal to 0.1 VEim/M.  The 
cases solved are for the following: 

1. A simply supported beam subjected to a 
uniformly distributed load such that there is no 
cross correlation between loading intensities. 
Thus, 

SI(W-XA'XB) = SI("-XA) S(XA- XB) 

(The 5 -function has zero value except when 
xA = xB.) 

This problem was solved by dividing the 
beam into eight equal parts. The mass and 
stiffness matrices for a bevm element can be 
obtained from Ref. 3. The uniformly distrib- 
uted load is assumed to be acting at the node 
points. The generalized displacements used 
and the corresponding loads are shown in Fig. 
i, while stiffness and mass matrices for the 
uniform simply supported beam are illustrated 

10 
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Fig. 1.    Generalized displacements and con- 
centrated forces for simply supported beam 

in Figs. 2 and ?.  The power spectral density, s, 
per unit length of the load is assumed constant 
for all frequencies (Fig. 4). The power spectral 
density matrix §,(») in this case is a diagonal 
matrix with diagonal elements corresponding to 
r3> r4> r6> r«> rioi ru and ri4> each equal 
to SL/8.   Table 1 delineates the mean square 
values of the displacements for various points 
along the beam and, in addition, gives the exact 
results from Ref. 14. 

2. A simply supported beam subjected to a 
concentrated load at the center. This beam was 
also divided into eight equal parts. The power 
spectral density S for the load was agein as- 
sumed to be constant for all frequencies. The 

TABLE 1 
Mean Square Values (times EI vTEn/SL5) of 
Displacements due to Uniformly Distributed 
iUndom Load 

x/L Exact Finite Element 
(Ref. 14) Approach 

1/8 0.0626 0.0599 
1/4 0.1838 0.1814 
3/8 0.2873 0.2842 
1/2 0.3269 0.3235 
5/8 0.2873 0.2842 
3/4 0.1838 0.1814 
7/8 0.0626 0.0599 
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Fig. Z.   Stiffness mairix for a simply supported 
beam divided into eight equal parts 
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Fig. 3.   Mass matrix for a simply supported 
beam divided into eight equal parts 

Itii 

input power spectral density matrix, s,, in this 
case is zero except the diagonal element, s 
which is equal to s.   By using the procedure 
outlined in Ref. 17, the mean square value of 
this displacement at the center is approximately 
given by o.6538SL4/El vTEl compared to 
0.646SLVEI vmH obtained by the present 
method, giving an error of only 1 percent.  The 
mean square values of the displacements for 
all points of the beam are shown in Fig. 5. 

3. A simply supported beam subjected to 
two completely uncorrelated loads correspond- 
ing to generalized displacements r4 and r.,. 

In this case, SI44 and s 3ii J. i j were both 
equal to S which was assumed to be constant 
for all frequencies. Since the higher frequen- 
cies do not contribute significantly to the re- 
sults, the integrations were performed only 
from » = 0 to * =  10.8 vEI/ni.'. 

The same problem was solved with the as- 
sumption that the two loads were completely 
correlated. In this case. 

'm, 1 'us si». u ' SIIJ.I 

For the correlated case, the output power spec- 
tral densities were found to be twice as large 
as those for the completely uncorrelated case. 
The mean square values for the two cases are 
shown in Fig. 6. 

4. A cantilever beam subjected to a ran- 
dom concentrated load at the free end. 

Here the input power spectral density was 
assumed to be given by 

S(w) 

S («I 

0 W/v4l/mL4 •" 

Fig. 4.    Constant input power spectral density 
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Fig.  5.    Mean  square values of displacements 
due to a random concentrated load at the center 

COMPLETELY 
CORRELATED 

COMPLETELY 
UNCORRELATED 

Fig. 6.   Mean square values of displacements 
due to tivo  random loads 

where 

10.0 
mL4 

This is shown In Fig. 7. The mean square val- 
ues of the displacement along the beam are 
shown in Fig. 8. By using Eq. (28), the mean 
square values of the internal moments were 
computed and are shown in Fig. 9. 

SUMMARY AND CONCLUSIONS 

A general method for the determination of 
the response of a structure to multiple input 
random vibrations is outlined; the finite ele- 
ment method was used to characterize the 
structure. To Illustrate the method, the re- 
sponse of a uniform beam with various end 

-SOTS ■irtrt 10    »    »   40    50 

Fig 7. Input power 
spectral density for 
the  cantilever beam 
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Fig. 8. Mean square 
values of the displace- 
ments for a cantilever 
beam due ta a concen- 
trated load 

^ 

Fig. 9. M«an square 
values of the displace- 
ment for a cantilever 
beam due to a concen- 
trated load 

constraints «as determined when the beam was 
subjected to multiple random Inputs. It is be- 
lieved that these examples are sufficiently com- 
plex to Illustrate the method. Shear and rotary 
Inertia effects could have been included in the 
examples chosen by making use of the Timo- 
shenko beam element developed in Ref. 6, but 
this would only have served to make the com- 
putations more tedious. The method is appli- 
cable to nonuniform, nonsymmetrical beams as 
well as to plates, shells, or any other structure 
thnt can be reasonably subdivided into finite 
elements; moreover, the method can handle a 
fully populated input power spectral density 

matrix, and is completely general with respect 
to geometry and material properties. 

Mathematically, It can be shown that the 
method converges to the exact solution as the 
number of elements is increased; therefore, 
any desired degree of accuracy can be obtained, 
depending on computer and formulation time 
expended. Care should be used when numerical 
Integration is used to calculate the mean square 
values of the displacements or stresses.  For 
Instance, near the natural frequencies, the in- 
tegration interval to be used should be small in 
order to incorporate the peaks in the output 
power spectral densities correctly. 
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Appendix 

NOTATION 

The following symbolt, have been adopted 
for use in this paper. Underlines indicate that 
th2 symbol represents a matrix. 

a = Boolean transformation matrix 

A a transformation matrix giving displace- 
meptn u in terms of v — —n 

c - damping constant 

B » transformation matrix giving strains in 
terms of vn 

c = diagonal damping matrix, the nth ele- 
ment of which is cn 

c s damping matrix for the complete 
structure 

Cn = damping matrix for the nth element 

[c;] = ^«c* 

D = matrix giving stresses in terms of 
strains 

f = frequency in cycles per second 

F = dissipation function 

h = the matrix of impulse response functions 

H = matrix of complex response functions 

k = diagonal stiffness matrix, the nth ele- 
ment of which is Kn 

K = stiffness matrix for the complete 
structure 

Kn stiffness matrix for the nth element 

[K;] = ^'K* 

L = length of the beam element 

m = mass per unit volume; for beams, mass 
per unit length 

m = diagonal mass matrix, the nth element 
of which is Mn 

Mn = mass matrix for the nth element 

tui;] = tf'M* 

. p = real part of input power spectral density 
matrix 

P = internal forces 
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q ■ normal coordinates 

q' - Imaginary part of Input power spectral 
density matrix 

r ■ generalized displacements for the whole 
structure 

S = generalized forces for the whole 
structure 

R. ,   « matrix of cross ccrrelation functions 
'i'i tor displacements rj 

Eg g   ■ matrix of cross correlation functions 
' '     for forces R, 

Sj a input power spectral density matrix 

Ss = output power spectral density matrix 

Sp0 ■ output power spectral density matrix 
for internal forces p 

t 

T 

U 

x,y,z  = 

* = 

2Cn = 

T = 

I ] = 

<    >    = 

time 

kinetic energy 

strain energy 

nodal displacements for the nth element 

frequency In radians per second 

nth natural frequency 

rectangular coordinates 

matrix of normal modes 

Cn A' Kn "n 

time variable 

diagonal matrix 

time average 
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FREQUENCY ANALYSIS OF REPETITIVE BURSTS 

OF RANDOM VIBRATION 

W. E. Noonan 
McDonnell Company 
St. Louia, Missouri 

An investigation was conducted to determine the applicability of using 
an analog harmonic analyzer to determine the frequency spectrum of 
transients or signals that consist of a series of pulses cr bursts. The 
analysis was based on the application of standard Fourier techniques 
for transient functions to obtain an amplitude function Independent of 
time. The Fourier amplitude spectrum was obtained by applying the 
energy function relating time and frequency. 

This investigation indicated that the harmonic analyzer must be able to 
perform the functions of filtering, true squaring, and true integration. 
An analyzer with these capabilities can determine the Fourier ampli- 
tude spectrum of transient functions or the power spectral density of 
randomly occurring pulses or bursts.   The technique presented in this 
paper providee an accurate, economical method for analyzing data that 
previously required the use of a digital computer. 

INTRODUCTION 

The analysis of periodic and stationary 
random functions has been extensively detailed 
in the literature. Many investigations have 
been conducted in the industry to develop equip- 
ment capable of producing, controlling, and 
analyzing periodic and continuous random data. 
Frequency decomposition harmonic analysis is 
commonly used for periodic functions and 
power spectral density analysis of continuous 
random functions. Occasionally vibration data 
is encountered that does not fall into either of 
the above categories. An example of such a 
signal is the vibration generated by a rocket 
motor or thruster that is fired intermittently 
for short periods but otherwise remains inac- 
tive. The purpose of this paper is to present a 
method for processing such data and to de- 
scribe the use of a harmonic analyzer for im- 
plementation of this method. 

The analysis to be described is based on 
the well-known Fourier transform for mapping 
transient time function into the frequency 
domain [1]: 

F(f) I> t) e - ja>t dt (1) 

Application of the Fourier transform requires 
the integral of the data to be absolutely conver- 
gent. The integral, 

£ if(t)idt (2) 

must bo finite. 

A theoretical study of the Fourier trans- 
form as related to a transient function is re- 
viewed, snd its relation to the energy and power 
spectrum is shown. The analysis of data con- 
sisting of short-duration bursts is described, 
and the achievement of power spectral density 
for the environment, using transient analysis 
techniques, is demonstrated. Methods of per- 
forming the Fourier transform using an analog 
harmonic analyzer are presented, and the anal- 
ysis of stylized pulses is included. 
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FOURBR ANALYSIS 

Fourier Tnuutform — Transient Function 

The Fourier transform (defined by Eq. (1)) 
for a transient function Is obtained from the 
Fourier series for periodic function»: 

f(t)=£',~,,fr'f<'')«",n-0'-* 
(3) 

A« i/T, Is equal to f0, Eq. (3) is rewritten, 

«sr» ■'-Tp/j (4) 

No», if the period T0 cprows without limit, 
the periodic function f(t) tends to an aperiodic 
(transient) function, and Eq. (4), therefore, ap- 
proaches the limiting form, 

f(t)=    f    el"» df   I     f(a) e-1*" der. 

where T,,-», f0-df, andnf0-»f. 

(5) 

The Fourier integral (Eq. (5)) for transient 
functions can be written as the transform pair: 

and 

F(f) =    I     f(t) e"1"' dt 

f(t)=    f    FCf)«"" df. 

(6) 

(7) 

The transform pair in Eqs. (6) and (7) can 
be written in terms of angular frequency (*>) by 
substituting 2>r/a>0 for T, in Eq. (3).  For this 
case the transform pair is expressed as 

n») -. |F(«)| «'*<-> (ii) 

The functions |F(f)| and |F(«)| are 
amplitude-density functions and have the di- 
mensions of amplitude Aertz and amplitude/ 
radian/second. The amplitude density is not a 
measure of the amplitude characteristics of 
f(t) because the amplitudes of the sinusoidal 
in Eq. (7), F(f) df, are infinitesimal. The 
amplitude density is a characteristic that shows 
relative magnitude only. 

Equation (6) is the relation that maps the 
transient function from the time-to-frequency 
domain. It is the performance of this operation 
that will be discussed using analog techniques. 

The energy relation for the time and fre- 
quency function will now be discussed. Return- 
ing to the periodic function, the average power 
is expressed as 

T   / 2 * 

^   f '      f1(t)dt =  £   |V(n)|».      {13) 

where 

-T./l 1      f  • -in-ot 
V(n) = x- f(t) e        0    dt 

J-Tn/2 

The energy in one fundamental period is 

f^t) «ft = T0   >      |V(n) 
•'-T./2 n..a 

(13) 

Letting the period approach infinity for the 
transient function, the energy can be expressed 
as 

li.    y   |V(n)|2T0 
0 n w-« 

F(a.) = ^  [    f(t) e-1"' dt 

and 

f(t) du. 

(8) 

(9) 

The F(f) and F(u) functions can be written 
in terms of amplitude and phase spectrums: 

F{f)= |F(f)| .'*<') (10) 

and 

0(14) 

and 

CD 

lim    Y   IVC")!' To 
T. -• »  l—i 

0 nm-m 

lim    / f(t) e        0    dt 
To-"nT^,    J-T0/a 

f .  (15) 
■n 
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Applying this to Eq. (13), the energy rela- 
tion for the time and frequency transient func- 
tion is expressed as 

if    f»(t)dt =   f     |F(f)|2df (16) 

The above expression in terms of angular fre- 
quency is 

j     f2(t) dt =  2rr   f     |F(w)|2 dw . (") 

As the total energy of a transient is finite, 
the average power over an infinite period is 
infinitesimal. The integral square of the func- 
tion over an infinite interval is finite, but the 
mean square over the same infinite interval 1R 
an infinitesimal quantity. 

Some discussion of the one-sided spectrum 
2] should be included. With reference to Eq. 
16), it should be uoted that a negative frequency 

spectrum has little physical meaning. The 
spectrum  |P(f )!a is an even function, and Eq. 
(16) could be rewritten as 

I 

[    fä(t) dt = 2   f    |F(f)|J df .       (18) 

If we let |F'(f)| =vT|F(f)|, then 

f   f2(t) dt =   f    iF'cf)!2 df. (19) 

The spectrum |F'(f )| is (he function that 
the analog analyzer is calibrated to display. 

Fourier Transform and Power 
Spectral Density 

Certain random environments involve mul- 
tiple, short-duration pulses or bursts. These 
functions can be a randomly occurring repeti- 
tion of the same pulse or an ensemble of statis- 
tically independent random bursts with equal 
power spectral densities. A pulse is defined as 
a single excursion from the zero base line, 
while the burst consists of a complex waveform 
having a number of plus and minus excursions 
from the zero base line. Both the pulse and 
burst ensembles differ from the transient, as 
the ensemble has finite power. 

The power spectral density of the ensemble 
is related by a weighting factor to the squared 

Fourier amplitude spectrum of the incUvldual 
pulse or burst. The vtighttng factor la the av- 
erage number of occurrenses per aecond. Ad- 
ditional restraints, which depend on the wm/mne* 
of positive and negative occurrences, affect the 
spectrum of the ensemble near aero frequency. 
These restraints will be discussed in detail In 
a later section. 

The analysis of an ensemble of independent 
bursts is conducted in a manner Jimilar to the 
transient analysis. The squared Fourier am- 
plitude spectrum is computed for each pulse or 
burst, summed, and then averaged over the 
time sample. 

L ivoi* 
<Kf)-'-^-T 

(20) 

where 

G(f) s power spectrum ensemble 

N « number of pulses in time T 

T o length of time sample. 

If it is assumed that the Fourier amplitude 
spectrum is the same for each function, then 
Eq. (20) can be rewritten as 

cm^l^l'- (21) 

where N/T = weighting factor — average number 
of bursts per second. 

A discussion of Eq. (21), including verifi- 
cation by experimental measurements, is pre- 
sented in a later section. 

ANALOG ANALYSIS 

The analog analysis of transient data con- 
sists of the basic operations of filtering, squar- 
ing, and integrating. The result of these oper- 
ations is the amplitude spectrum, |F(f)|, of the 
Fourier transform. The filtered output of the 
transient, f0(t), can be expressed as a sum- 
mation from the beginning, a, to the time, t, 
of the input transient, f,(t), and the unit im- 
pulse response of the filter, h(t): 

f,(t) f   h(t- r) f^T) dr (22) 

Mapping Eq. (22) from the time-to- 
frequency domain results in an expression 
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cooUlnlnc tte Fourier spectrums and the fre- 
qutnqr response function of the filter: 

IVOl = lH(Ol !ri(f)l . (M) 

where 

r i, fe - M/2 < f < fe + 
lH<f)l \ 

L 0,  eliemhere 

Af/2 

where fe ■ filter certer frequency, and Af - 
filter bandwidth. 

The filtered time function contains only 
that part of the total energy of f^t) in the fil- 
ter's narrow frequency band. The energy of 
the filtered output is the integral square of the 
time function and is expressed as 

f   f.,(t)dt (24) 

As f9(t) has nonzero values over some 
finite time, T, Eq. (24) can be rewritten as: 

r f0
j(t)dt. (25) 

Returning to the time-to-frequency relation 
for the energy (see Eq. (18)), 

f    f,»(t)dt =  2   j     |F0(f)l
1df. (26) 

As the characteristics of the filter are 
such that only energy in the bandpass is trans- 
mitted with unity gain, the limit of integration 
can be restricted to the filter bandpass, and the 
output Fourier amplitude spectrum can be re- 
placed by the input spectrum: 

|    f0
2(t)dt = 2 iFiCOl2 df .     (27) 

o -'«c-Af/a 

If the bandpass of the filter is small, so 
that the amplitude spectrum of the data is as- 
sumed constant within the frequency band, Eq. 
(27) is rewritten as 

[    f0
1(t)dt = 2 iFjCOl1 Af . (28) 

•'o 

The Fourier amplitude spectrum is there- 
fore shown to be 

iFjCOl FI 
1 1/2 

V(t)dt (29) 

The |F'(f )| spectrum defined by Eq. (19) 
is expressed as 

|Fi(f>l = w f,a(t)dt (30) 

Equation (30) is the function which de- 
scribes the analog analyzer. The analyzer 
must perform the basic required functions of 
filtering, true squaring, and true integration. 
True squaring and true integration are manda- 
tory operations, and it is these operations 
which enable the harmonic analyzer (see Fig. 1) 
to perform analog analysis of a transient. The 
output of the integrator is proportional to 
|F'(f )|2.   By displaying the function in loga- 
rithmic format, the analyzer can easily display 
the absolute value of the Fourier spectrum or 
the power spectral density. The power spectral 
density is obtained by normalizing the function, 
|F'(f )|', with respect to the length of the time 
record, T.  When analyzing an ensemble of 
pulses or bursts, the function, |F'(f)|2, repre- 
sents the squared Fourier transform of the en- 
tire ensemble. 

Doto- FilMr 
Tru. 

Sq-r. 

DMKtor 

Tt« 

CMtar 

Fra^tMiKy 
CoMral 

— x          y 
J    Lo,     1 
|Conv«rt«rl 

Fig. 1.   Analog analyzer 

The procedure for the analog analysis is to 
transcribe the transient onto a magnetic tape 
loop. Included on this loop Is a trigger signal 
for the Integrator which starts the integration 
function prior to the beginning of the transient. 
The Integrator is set to Integrate all nonzero 
values of the squared, filtered output. The 
process Is repeated as the center frequency Is 
stepped through the frequency range In band- 
width Increments. This results in a value of 
the Fourier amplitude spectrum at each filter 
center frequency. 
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Analog Analysis - Stylized Pulses 

Analog analysis was conducted on a single 
pulse and on an ensemble of 54 pulses all hav- 
ing positive magnitude.  For the multiple-pulse 
case, the time duration between the beginning of 
each pulse varied linearly but was repeated 
once for each incremental change. This re- 
sulted in 27 different time spacings for the en- 
semble of 54 pulses. The time spacing for this 
ensemble varied from 32.32 to 320 ms in 12.32 
ms increments. The pulse amplitude was unity, 
and the pulse width was 20 ms. 

The single pulse, which was analyzed on 
the harmonic analyzer, is presented in Fig. 2. 
The Fourier amplitude spectrum resulting from 
the analog analysis is compared with a spec- 
trum which is mathematically derived from the 
time function. Figure 3 verifies the applicabil- 
ity of the harmonic analyzer in determining 
Fourier amplitude spectrums for transient time 
functions. 
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Fig. 3. Analog analysi«, styl- 
ized pulse — frequency function 
Fourier   amplitude    spectrum 

T 
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»MS 

Fig. 2. Analog analysis, styl- 
ized pulse —time function 

4 and 5 [3]. The only value for the autocorrela- 
tion is at zero time displacement (r = o).   The 
value at zero r is a weighted unit impulse. The 
weighting factor is the average number of im- 
pulse occurrences per second. Equations (31) 
and (32) are expressions for the autocorrelation 
and power spectral density. 

and 

R(T)   =^U(T) 

G(f) =Y' 

(31) 

(32) 

where 

The power spectral density for the time- 
variant ensemble was approximated using Eq. 
(21). Although the time-variant ensemble is 
not a random process consisting of Independent 
occurrences, the mathematical representation 
using Eq. (21) will be shown to be valid except 
at certain discrete frequencies. The discrete 
frequencies are a function of the time depend- 
ency between pulses. 

Before discussing the applicat.lity of Eq. 
(21), more genenJ cases will be considered. 
These cases will k)e based on the applicat.jn of 
unit impulses. The first case is the randomly 
occurring, Poisson-distributed unit Impulses 
that have equal probability of positive or nega- 
tive occurrence. The autocorrelation and 
power spectral density are presented in Figs. 

N/T uM 

R(r) 

Tim« DitplociMAnt - r 

Fig. 4. Random Poisson- 
distributed unit impulses 
(equal probability of pos- 
itive or negative occur- 
rences) — autocorrelation 
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Pig. 5. Random Poinon- 
diatributed unit impulses 
(equal probability of pos- 
itive or negative occur- 
rences)—power spectral 
density 

N/T»(r) 
R(f) 

X 

1 
(MT)2 

1 
Tim« Di«ploc»in«nt - r 

Fig. 6. Random Poisson- 
distributed unit impulses 
(positive occurrence only) — 
autocorrelation 

F(T) = autocorrelation 

G(f) = power spectr&l density 

NA ■ weighting fad  r — average number 
of impulses per second 

N » number of Impulses in time rec- 
ord,! 

U(T) = unit impulse. 

If the randomly occurring, Poisson- 
distributed unit impulses are restricted to only 
positive occurrences, the autocorrelation and 
power spectral density for this ensemble of 
unit impulses (see Figs. 6 and 7) are expressed 
as [3] 

and 
*'> #« • (?)'        (ssl 

«O.g). g)'»(f). (34) 

The effect on the power spectrum of restricting 
the ensemble to only positive occurrences is to 
introduce a weighted unit impulse [(N/T)] u(f)] 
at zero frequency. This zero frequency compo- 
nent can be verified using the following expres- 
sion relating the power spectrum and the Fou- 
rier amplitude spectrum: 

G(f) 
|F(f)| (35) 

At zero frequency, the Fourier amplitude is 
equal to the integral (area) of the time function. 
The power spectrum at zero frequency for the 
positive occurring unit impulses ts expressed as 

(N/T)2 u(n 

—r- 
N/T 

wn 

-I 0 ,( 
Fr«qu9ncy - f 

Fig. 7. Random Poisson- 
distributed unit impulses 
(positive occurrence only) — 
power spectral density 

G(0) = 
|F(0)|' 

T 

(36) 

If the time (T) grows without limit, Eq. (36) can 
be rewritten as 

G(0) = ©'- (f). (37) 

Equation (37) corresponds to the second term 
of Eq. (34). 0 

The general case for the time-variant en- 
semble of Fig. 10 would be positive unit Im- 
pulses occurring at the start of each square 
pulse.  An exact mathematical solution for this 
case was not considered necessary, as general 
trends established sufficient Information to 
verify experimental results. The autocorrela- 
tion and power spectral density for this time- 
variant ensemble of unit impulses are pre- 
sented In Figs. 8 and 9. The autocorrelation 
of this time-variant ensemble of unit impulses 
is similar to the autocorrelation of the 
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G(f) = ' 181. 

(8») 

(40) 

The power spectral density of the ensemble 
of square pulses (see Fig. 10) was determined, 
based on linear system relations and the power 
spectral density of the time-variant unit Im- 
pulses. It was assumed that a theoretical sys- 
tem could be constructed such that the assumed 
system's unit impulse response would be equal 
to the individual square pulse in the time- 
variant ensemble. The input-output relation 
for this assumed theoretical system can be ex- 
pressed as 

where 

foutC*) =    f    h(t-r)  f(T) dr 

Theoretical System 

(41) 

finC») ""»»(t)  ►foUt(
t) 

where h( t) = unit impulse response — square 
pulse, 20-ms wide, unit amplitude. 

Poisson-distributed, positive impulses. The 
primary difference is that the constant, (N/T)2, 
in the random ensemble is replaced by a series 
of weighted unit impulses, spaced periodically 
in time, with weighted values ranging from i T 
to 2/T.   These periodic impulses only affect 
the power spectrum at zero frequency, the fun- 
damental frequency, and harmonics. The fun- 
damental frequency for this case is the recip- 
rocal of the incremental time spacing, 1/0.01232 
or 81 Hz. 

At zero frequency, the power spectrum for 
the time-variant case approximates the zero 
frequency value for the Poisson-distributed, 
positive pulses and is expressed as 

0(0) ©'" (f) (38) 

The magnitude of the power spectrum at 
the fundamental frequency and the first seven 
harmonics was numerically calculated and was 
found to be approximately zero. The power 
spectral density of the time-variant ensemble 
of unit impulses can now be expressed as 

Fig. 10. Analog analysis, 
stylized multiple pulses — 
time function 

The Fourier transform of the unit impulse 
response is the system function, H(f), for the 
theoretical system.  For this case the system 
function would correspond to the Fourier trans- 
form, F(f), of the individual square pulse.  In 
a linear system, the output power spectral den- 
sity is a function of the input power spectral 
density and the system function, and is ex- 
pressed as 

Gou.(f) -   l"(f)l3Gin(f). (42) 

For the particular theoretical system de- 
scribed here, the input-output power spectral 
density is expressed as 
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wo = Ira* 1 Ci„(0 (48) 

The three cases discussed previously, in- 
volving the random and time-variant unit im- 
pulses, will now be applied to this theoretical 
system. The output of this system would be a 
repetition of the 20-ms square pulses. The oc- 
currence of the square pulses would be a func- 
tion of the occurrence of the unit impulses. 
The power spectral density for the output of 
this theoretical system, resulting from the ap- 
plication of the random and time-variant unit 
impulses, can be expressed as follows: 

(1) Poisson-distributed unit impulses, with 
equal probability of plus or minus occurrence: 

G(f)-ylF(f)la. (44) 

(2) Poisson-distributed unit impulses with 
only positive occurrence: 

G(f) = ^ |F(f)|2 J^F(O)  2u(f).      (45) 

(3) Time-variant unit impulses: 

cKo = 7iF(f)r+[YF(o)l u(f) 

G(f) = 0.     f 

' f ^ ■81 

. in= 1,2,3 7 

(46) 

»81. (47) 

Equations (46) and (47) give the solution 
for the time-variant ensemble of square pulses. 
A comparison of these solutions with data ob- 
tained from an analysis on a harmonic analyzer 
is presented in Fig. 11. This comparison veri- 
fies the suitability of the harmonic analyzer to 
perform frequency analysis of pulse data. 

It should be noted that the power spectral 
density, presented by Eqs. (46) and (47), only 
applies to the time-variant ensemble in ques- 
tion. Any variation in the time spacing would 
affect the magnitude of the periodic components. 
The extreme case would be a constant time 
spacing between pulses (periodic pulse train). 
For this case, the values at the fundamental and 
harmonics would predominate, and the values 
at all other frequencies would become insignifi- 
cant. 

Some mention should be made of the 
multiple-burst case. This case consists of 
shurt-duration, complex waveform signals.  If 
the multiple-burst signal was constructed by 
taking short-duration, random samples from a 

Fig. 11. Analog analysis, 
stylized multiple pulses — 
frequency function 

continuous, stationary random function, the 
power spectral density for the burst function, 
SgC f), is expressed as 

11 
(48) 

Fourier transform of individual 
number of bursts in time record, 

where F( f) 
burst and N 
T,. 

If it is assumed that each burst has the 
same power spectral density, then the power 
spectral density of the continuous function, 
Sc(f), would be equal to the power spectral 
density of the individual burst.  The relation 
between the power spectral density of the con- 
tinunus function and the multiple-burst function 
is expressed as 

Sc(f) Nt, SBC) 
|F(f)l (49) 

where t. burst duration. 

Equation (49) is the basic operation per- 
formed by analog harmonic analyzers to de- 
termine power spectral density for continuous, 
stationary random processes. 
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Figure 12 presents a comparison between 
the power spectral densities of continuous and 
burst functions. Both functions were analysed 
on a harmonic analyzer. The burst function 
was obtained from a burst vibration test and 
represents the input acceleration spectrum for 
a qualification test specimen. The burst occur- 
rence corresponded to the time-variant case 
discussed previously, and the burst duration 
was 20 ms. The periodic components, which 
were discussed previously, were masked by the 
analysis bandwidth. The sharp peak in the 
burst spectrum at 900 Hz was attributed to a 
structural resonance of the vibration system. 
This resonance was excited by transients in- 
duced into the system by the abrupt starting 
and stopping of the burst signal. 

CONCLUSIONS 

It was shown that the analog analyzer de- 
scribed in this paper determines the absolute 
value squared of the Fourier transform, I F( f) I'. 
Depending on the signal to be analyzed, the am- 
plitude of the Fourier transform or the power 
spectral density can be determined. 

The analog techniques suggested in this 
paper present an accurate and economical 
method for analyzing data which previously 
required the use of a digital computer.  Analog 

Fig. 12. Acceleration power 
spectral density comparison 
test, continuous vs burst 
function 

harmonic analyzers arr admittedly slower than 
digital computers but ai 3 less expensive when 
analyzing random data that requires statistical 
confidence. 
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DISCUSSION 

H. Saunders (G.E. Co.):  What type of har- 
monic analyzer did you use ? 

Mr. Noonan:  We used a Honeywell Model 
9300, but any harmonic analyzer which had ca- 
pabilities of performing filtering, true squar- 
ing and true integration could be used.  That 
was the primary factor. 

Mr. Saunders:  One of the problems with a 
spectral analyzer is the limited amount of con- 
tinuous data available. The tape splice fre- 
quency usually tends to mask some of the data. 
Have you given any thought to using the digital 
approach called the Cooley-Tukey method? 

Mr. Noonan: We have used that at McDon- 
ne C. The only problem is that it takes such a 
large volume of data or sample to describe this 
tyn» of function.  For instance, these bursts 
varied linearly with time, occurring over a 
10-1/2 second period. The frequency response 
went up past 2 kHz so, considering the sample 
rate and sample duration, a very large storage 
capacity would be required in .'he digital com- 
puter. This is very expensive. We could do 
this on a harmonic analyzer at a lower cost. 

Mr. Saunders:  I did not refer to the con- 
ventional or Blackman-Tukey method. I meant 
the fast Fourier transform technique which is 
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the Cooley-Tukey method. In fact, the shorter 
amount of time you have for a data burst, the 
better reratts you can get using this approach, 
it Is much more accurate than the analog type. 

Mr. Noonan: The sample that we are look- 
ing at Is 10-1/2 secunds. There are the data 
we want to analyse. W9 do not want to analyze 
1/2 second of this. We want to analyze 10-1/2 
seconds. I understand that this technique em- 
ploys a method by which (me can process these 
data very rapidly, but I can't understand how 
this can be decreased. You have 10-1/2 sec- 
onds data and you have to sample at a certain 
rate. That Is fixed. 

Mr. Saunders: Are you considering the 
10-1/2 seconds of data to be stationary and 
ergodic or nonstationary ? 

Mr. Noonan: No, it is considered as a 
transient. The whole approach was made using 
one burst or one sample. It ended after 10-1/2 
seconds and It began at zero. It was not con- 
tinuous. 

Mr. Saunders: I think if yoi through 
the Cooley-Tukey approach, you u     save a lot, 
both in computing time and in accumcy. 
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SIMPLIFIED RANDOM VIBRATION COMPUTATIONS 

LaVerne W. Root and Allen S. Henry 
Collins Radio Company 

Cedar Rapids, Iowa 

A complete set of simplified formulas for mean-square amplitude has 
been derived for those broadband random processes which satisfy two 
assumptions:   The process is staticrv.ry and the spectral density of the 
process may be represented by straight lir.e segments on log-log co- 
ordinates.   These formulas are exact and are simpler to use for both 
hand and machine computations than the formulas presently available 
in the literature. 

Given acceleration spectral density, velocity spectral density, or dis- 
placement spectral density, one can compute mean-squcie acceleration, 
mean-square velocity, or mean-square displacement in terms of any of 
the spectral density quantities, using the tables of formulas provided in 
this paper.   Also included in this paper are most of the formulas and 
definitions used in discussing random vibration test spectrums. 

INTRODUCTION 

This paper presents formulas for the cal- 
culation of the mean-square amplitudes associ- 
ated with a broadband random spectrum. These 
formulas are simpler to use for both hand and 
machine calculations than the formulas previ- 
ously presented in the literature. Though sim- 
ple to use, the formulas presented herein are 
exact when the random vibration spectrum is 
represented by straight line segments on log- 
log coordinates. Therefore, these simplified 
formulas have a broad application since virtu- 
ally all random vibration test spectrums are 
represented by straight line segments on log- 
log coordinates, and all random spectrums can 
be approximated to any required degree of ac- 
curacy by straight line segments on log-log 
coordinates. 

A convenient reference for the formulas 
and definitions commonly used in discussing 
random vibration spectrums is also provided in 
this paper.  The formulas and definitions are 
given as they are used in deriving the formulas 
for the mean-square amplitudes. 

Tables 1 through 3 (acceleration spectral 
density, velocity spectral density, and displace- 
ment spectral density) give the formulas for 
computing mean-square acceleration, velocity, 

and displacement in terms of the specified 
spectral density.  Other important formulas 
are indicated by numbers in the text.  Appendix 
A presents a numerical example that illustrates 
the use of several of the formulas. 

NOMENCLATURE 

a    acceleration (g) 

A( f)    acceleration spectral density 
(gVHz) 

d    displacement (in.) 

d        double amplitude displacement 
(in.) 

D( f)    displacement spectral density 
(in. VHz) 

f    frequency (Hz) 

K;    number of octaves between f. 
and fi+I 

m    db change in root-mean-square 
amplitude 

M   db change in spectral density 
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p( t), rx t), r (t >   general random functions 

P( f), 0( O • R( f)   general spectral density 
functions 

•Jr«»   root-mean-square amplitude of 
general function 

t   time (sec) 

v   velocity (in./sec) 

V( f)   velocity spectral density 
(In.VsecVHz) 

-tn   logarithms to base e 

log   logarithms to arbitrary base 
unless base is specified 

a  dimensionless slope 

e  slope in db per octave 

n  standard deviation 

DERIVATION OF MEAN-SQUARE 
AMPLITUDE FORMULAS 

Assume that q(t) is a stationary random 
process; two common parameters used to de- 
scribe the process are the mean-square 

amplitude, (q7), and the spectral density, Q(f) 
[1]. The following is the general equation for 
calculating the mean-square amplitude from 
the spectral density [2]: 

(?) = J   Q(f) df • (l) 

The root-mean-square amplitude, qrm5, is 
given by [2] 

Ir. [(q1)] (2) 

The purpose of this paper is to derive for- 
mulas for (O and qrilll, using Eqs. (1) and (2), 
when Q( f) is represented by a set of straight 
line segments on log-log coordinates. 

We shall suppose that Q(f) is represented 
by N straight line segments (Fig. 1) and that 
the initial and terminal points of each segment 
have the coordinates (fj.Qj) and (fi*i.Ql+i); 
i = 1,2 N respectively. Since only straight 
line segments are used in representing Q( f), a 
general equation may be written which is ap- 
plicable to each segment. In terms of the i -th 
line segment, the equation is 

Q(f) = qf  ' fi  £ f <  fi + 1 (a) 

where the dimensionless slope, o,, is given by 

< 
• .. 
0 
J 

t + 

<•,  +  I- «I  *  I» 

'<l,.«ll 

'I ••»I 

-i 1 1—>   I  I > I t 

(IN-ON + l' 

H 1 1 1     I    >   I   I 
rncQucNCv (HZ> '.i-oa SCALE) 

Fig. 1.    Typical spectral density plot 
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. i°8 (Qi^./Qi) 
1 lo« (fi*,/fi) ' 

and the constant, q, Is given by 

c      Qi     QTM 

(3) 

(b) 

By substituting Eq. (b) into Eq. (a) one ob- 
tains 

«"=" id" - *•■ (er ^ 
Substituting Eq. (a) into Eq. (1) yields 

(?) -LS Cjf ' df . (C) 

The preceding equation shows that (q]) is 
simply the sum of N individual integrals, each 
extending over a single line segment; that is 

(q7) = E (?>!. (5) 

where 

(?), ),.  J"   qc-'df. (d) 

To evaluate (q7), it suffices to derive 
equations for the evaluation of a typical term 
(qT)i.   Note that even though the i-th line seg- 
ment, as shown in Fig. 1, has a positive slope 
(ai > o), it is generally possible for the slope 
of the i-th segment to be zero (^ = o) or nega- 
tive (a. < o). 

Integrating as indicated in Eq. (d) and using 
Eq. (b) yields the two equivalent expressions 

^ Qi  h in (fjt,/»i) 

(6) 

Formulas (e) and (6) for (q*) an those 
most commonly presented in the literature 
[3,4,5,6]. However, Formula (e) is time con- 
suming and awkward to use in performing man- 
ual calculations because it is necessary to 
evaluate either (fi/fi»,)"' or (fl4,/f,)*». 
Computer programs using Formula (e) most 
incorporate checks to assure that the magnitude 
of these quantities does not exceed the allowable 
range of the computer. 

Formula (e) can be replaced by a much 
simpler formula by noting that from Eq. (b), 

(fi+,/fi)
a'    «WQi)- W 

By substituting (Q^j/Qi) for (f^j/fi)*' in 
Eq. (e), one obtains the result that it ai ^ -i, 
then 

«i2)i'- ^n [oi*i'i*. - <Mi] (7) 

This formula, which can be used in performing 
either manual or machine calculations, does 
not have the disadvantages of Formula (e) as 
previously cited. 

As a. approaches minus one, Eqs. (7) and 
(e) approach the indeterminate form (0/0) which 
causes computational difficulties. Equation (6) 
is modified as discussed in Appendix B for use 
when Oj is close or equal to minus one. The 
modified formula is given as Eq. (B-l), which 
consists of averaging the two formulas given in 
Eq. (6). It should be noted that Eq. (B-l) re- 
duces to Eq. (6) for ai - -l and that the error 
(a. l-i) from using Eq. (B-l) is considerably 
less than would be obtained from using either 
of the formulas from Eq. (6). 

"•■-"fen 
ALTERNATE FORMULAS 

(e) In many cases the slopes of the line seg- 
ments representing a spectrum are given in 

Q.     r        /fj+A'i        1 I terms of decibels/octave.  If (9. Is the slope 
-   - 1   f1+, (-f—1    " fi expressed in decibels/octave, then there is 

provided that a. $ -i.   In the event ai = -I, 
Eqs. (b) and (d) lead to 

a simple relation between ei and ai.   Let K1 
be the number of octaves between f, and f if,, 
and 1»t M. be the decibel change between Qi 
apd <iiti.   Then 
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lo«10  ({i*l/fO      lax 
«I  =   »Of, (Wf,) = 1^~2       <8) 

"i =  »0 logI0 (QitI/Qt> (9) 

No» öj = ij/Kj, or using Eq. (3) 

«i s  JO (lof10 2) a. (g) 

For all practical purposes Eq. (g) may be re- 
placed with 

*! =   aaj ; (10) 

therefore Eq. (7) can be rewritten In terms of 
0l as J 

(^= ^T3 [^♦ifi^i-Qi'i] (ID 

for 0l t -3.   If öj = -3, then Eq. (B-l) should 
be used. 

EXTENSION OF FORMULAS 

Often one Is given 0(f) corresponding to 
q(t), and It Is necessary to compute either (p7) 
or (r7) where p(t), q(t), and r(t) are related 
as follows: 

P(t) = 5-   ^ -h (h) 

If P(f) and R(f) are the spectral densities 
associated with p(t) and r(t) respectively, then 
the following relations may be obtained from 
general theory [1]: 

P(f) =  (2rrf)J Q(f) 

R(f) = 0(f)/(^f)» 

(12) 

(13) 

Therefore, the quantities (p)i and (rT)i 
can be expressed in terms of Q. and a. using 
Eqs. (12), (13), and the simplified formulas for 
(pT)i and (r7); analogous to Eq. (7). That is, 

^h-ffll^i'lo-Vih']-  M-3 (14) 

=  (2")2Qit,
f!ti

1"(fl+i/
fi)-  ai = -3   (15) 

(^)l =~-, »" (»Ul/fi) 

Qi*. 

(2")2 fi + i 
In (f^./fi).    a, -  1.      (17) 

Successive applications of Eqs. (12) and 
(13) make it possible to express the mean- 
square amplitudes of higher derivatives or 
multiple integrals of q(t) using the coordinate 
points (fi.Qi) and the slopes a.. 

DISCUSSION OF FORMULAS 
AND TABLES 

Given aay one of the spectral densities 
A(0, V(f), andD(f) corresponding to acceler- 
ation ■; velocity v; and displacement (single 
amplitude) d, one can comnite the mean- 
square amplitudes (a3), (v2), and (d1) using 
the formulas derived previously. The formulas 
to be used for the mean-square amplitudes 
when the acceleration spectral density is known 
are given In Table 1. Tables 2 and 3 give simi- 
lar formulas in terms of velocity and displace- 
ment spectral densities, respectively. In ap- 
plying the formulas given in the tables, the 
following units must be used:   (a7), g; A(f), 
gf/Hz; (^), (ln./sec)2; V(f), (ln./sec)J/Hz; 
(d»), (in.)2; and D(f), (InOVHz. 

Once the mean-square values associated 
with the individual line segments have been 
computed, using the formulas from the tables, 
Eq. (5) is used to obtain the total mean-square 
value. The root-mean-square value is obtained 
using Eq. (2). 

In addition to the assumption of statlonarity, 
if one assumes that the random process Is 
Gaussian with a mean value of zero, the root- 
mean-square value from Eq. (2) is the standard 
deviation or q^ as it is occasionally designated. 
Frequently we are interested in q,^ which is 
given as 

3q (18) 

In the case of displacement one may h - in- 
terested in the three-sigma, peak-to-peak dis- 
placement, which is given by 

2d^ = 6drmK (19) p-p 

(in. double amplitude). 

(r2) 1  '   (2n)1(a.-l) 
Qu i*i 

f;, 
2L 
f; 

An additional equation, in terms of qrB1, is 
a   i i      (ie) the decibel change, m, between two levels, 

1 which is given by 

30 



TABLE 1 
Acceleration Spectral Density —g2/Hz 

MEAN-SQUARE AMPLITUDE DIMENSIONLESS SLOPE: a. SLOPE (db/OCTAVE):  6, 

Mean-square acceleration: g 

(ö1)" 
8,* -3 

(-^ J    IMVt.) 

.-1 e,'-i 

Mean-square velocity: (In/ttcr 

(v*)' 

(386)' A2     Al 0(366)      [A| _ ^ 
(flt-3)(2»)z [fj '   f, 

«• #3 

(386) 

2(2ir)2 

a, «I 

f2        f, 
Mtj/t,) 

©,x3 

Mean-square displacement: (in) 

(d2) 

(366)       lAa       A,' 

(«, - 3)i2»r I »I 

a, #3 

.4    ,5 .5 
3(366)2 

(fl,-9)(2«') 

«,  # 9 

Aj       A, 

f,5'    f? 

(J86)2 

 3 
2(2ir) 

at-3 

f 3 '    (s 10(^/1,) 

0,-9 
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TABLE 2 
Velocity Spectral Density - (In./sec) 2/Hz 

MEAN-SQUARE AMPUTUDE DIMENSION LESS SLOPE: a. SLOPE (db/OCTAVE):  fi. 

Mean-square acceleration: ft 

—y 

(2») v'-v' 
(", +3X386)    I 

«.^-3 

312»)* 

(fi, + 9)(386r 

», #-9 

\*i-v?' 

(2y>c 

(386)2 

- -3 

V2f8
3+V|f|3 

ln(f2/f,) 

Ö.--9 

Mean-square velocity: (ln/ttc)* 

«.♦I 
V2" Vi 

a, ^-i 

(»«)- 

_J_  [ 3 rv2,2"vi,.i 

0,1* "3 

v» '2 * Ü! 'i     indj/f,) 
2 

a.--1 fl,--3 

Mean-square displacement^In)2 

(d2)^ 

la,- i)(2»)2   I ,2 

9,^ I 

»2 'I 

(fl, - 3)12ir)     I '2 

fl. ^ 3 

I 

^^     '«« 

a, - I 0,-3 
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TABLE S 
Displacement Spectral Density — (in.) '/Hz 

MEAN-SQUARE AMPLITUDE 

Mean-square acceleration: gJ 

(or 

JIMENMONi.RSS SLOPE: at 

i+5){386r \ * *     '   '/ ( 0^+6)( 

o^i»- 5 

SLOPE (db/OCTAVE):  9t 

3(2^)*      ^ .,   „ .J 

8- «» -15 

(2i 
(386 ̂

(M^ii.),.,,,,,, 

fl««-l5 

Mean-square velocity:(in/»«f.r 

i2 

a ^(o..;-Mf) 

a* #-3 

(v*) 

^ (»••■•-»■•■") 

9*1» -9 

2 /0a%S*0,f,s\ 
(2ir)   ( 2   '  '   1 ^(fj/t,) 

a,.-3 Ö.--9 

Mean-square displacement: [inf 

(d2) 

/Ojfj+D.f.N 
^—i—j '"«V».» 
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' 

■=   2° lot|t   («Ir... »/<»,... l) (20) 

Oecuiooally one or more line segments In 
• spectrum leaves the spectral density unknown 
at one end point of the segment and a slope Is 
given Instead. Equation (4) allows one to com- 
pote the unknown spectral density using the fre- 
quencies, the slope, and the known spectral 
denstty. 

A numerical example Is Included In Appen- 
dix A to Illustrate the use of several of the 
equations which have been presented. 

CONCLUSIONS 

A complete set of simplified formulas for 
mean-square acceleration, velocity, and 

displacement has been derived. These equations 
are exact but ar« considerably simpler to use 
for both manual and nwcuxii» computation than 
previously published formuUs. 

Additional formulas have been included in 
the paper in an attempt to have all formulas 
used in conjunction with a random vibration test 
spectrum in a single document. 
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Appendix A 

NUMERICAL EXAMPLE 

To illustrate the use of the equations and 
tables given in the body of the paper we obtain 
■,„, and drBa for the spectrum given in Fig. 
A-l. All of the coordinates of the end points of 
the line segments are known except the spectral 
density at f,.   However, the slope is given as 
6 db/octave. Equation (10) gives ei = 3a.  so 
that a. = (01/3) - 2.   Equation (4) is used to 
obtain the spectral density A, = A^f,/!,)' ■ 
0.0148 gVHz.  The dimensionless slopes are 
computed using Eq. (3): 

log (0lfl/Q,) 

»°B (fi^/'i) ' 

for example. 

log (A4/A,)      log (0.06/0.1) 
log (f,/*,) =    log (167/100) 

It is convenient to tabulate the calculated 
values as in Table A-l, as several steps are 
involved in the computations. As spectral den- 
sity is g2/Hz, we obtain the mean-square ac- 
celeration and displacement formulas from 
Table 1: 

(^)i 

(d1)!  = 

A 2 jin(-{i*i/fi)- ai - -1 

(38M3 '■♦i 
o, k  3 

(386)J/A1M      AA 
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0.01 ■ 1 

o.oo* ■ ■ 
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100 200 

FRCQUCNCY   (Hi) 

Fig. A-l.    Typical acceleration spectrum 
for numerical example 

By carrying out the arithmetic one obtains 
the entries in Table A-l.  An intermediate step 
giving Ajfj and A./f/ is performed prior to 
using the preceding equations. The columns 
(ä7^ and (ds)l are totaled to give the total 
mean-square amplitude as given by Eq. (5): 

[(I5)],/2= 9.8 e, 

[(d2)]''" = 0.032 in. 

(q2) = £ (q2)!- 

The root-mean-square amplitudes are obtained 
using Eq. (2): 

The three-slgma, double amplitude dis- 
placement may be obtained by using Eq. (19): 

VP = 6dr«. = 0198 i"    DA 

TABLE A-l 
Sample Calculations 

i ai fi Ai Ajf. (^V A./f^ (^)ib      1 
1 2 10 0.0148 0.15 0.82 14.79x19« 870X10-6   1 

2 0 26 0.1 2.60 7.40 5.69x10 ■6 178 xlO"6 

3 -1 100 0.1 10.00 2.23 0.10x10-6 2x10 a 

4 0 167 0.06 10.02 73.98 0.01 x 10 6 ~0         j 
5 -7.58 1400 0.06 84.00 11.54 -0 ~0 

6 - 2000 0.004 8.00 - -0 - 

JCa2)  = 95.97. 
■'(d')  =   1050« 10"*. 
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Appendix B 

EVALUATION OF INDETERMINATE FORMS 

AMOciated with «ach equation for the 
aiMB-Mittare, there la a value, let ua aay C, of 
the dimenalonleaa slope a for which the equa- 
tion reduces to an Indeterminate (0/0) form. 
Therefore, when a = c, an alternate equation is 
given. In a practical situation a may be close 
to C so that the basic equation Is effect'-/ely in- 
determinate and yet the alternate equation is 
not exact. In these circumstances it is best to 
use the alternate equation in the form given in 
the tables and in Eq. (B-l) belov: 

Figure 3-1 gives the error caused by using 
either of the alternate forms of Eq. (6) in terms 
of | a - c|.     ;*ure B-2 gives the error caused 
by using U.       ornate form as given by Eq. 
(B-l). It is ~ «ar from these figures that the 
use of Eq. (B-l), in instances where a is close 
to r, will yield fairly accurate results when the 
basic mean-square equation is, for practical 
purposes, an indeterminate form.  Figure B-2 
is applicable to all alten, ate equations given in 
Tables 1, 2, and 3. 

(Ö1)! ■(' 
'i*i Qi h). (fi+i/f,)- 

(B-l) 

Fig. B-l.    Maximum error from using Eq. (6) in place of Eq. (7) 

la-Cl 

Fig. E-2.    Error from using Eq. (B-l) in place of Eq. (7) 
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CONCENTRATED MASS EFFECTS ON THE VIBRATION 

OF CORNER-SUPPORTED RECTANGULAR PLATES 

Richard L. Barnoski and Terry D. Schoessow* 
Measurement Analysis Corporation 

Los Angeles, California 

For certain problems iuvolving the shock and vibration isolation of 
panel-mounted electronic equipment, the physical system can be ideal- 
ized as a corner-supported, rectangular plate with a geometrically 
centered, concentrated mass.   This paper examines the variation of the 
fundamental frequency of this idealized configuration as a function of 
the plate dimensions, the boundary restraint at the corners, and the 
added mass.   Three rectangular plates a.-e considered with aspect ra- 
tios of a/b = 1.0, a/b = 1.5, and a/b = 2.0, and the boundary restraints 
are either simply supported or rigidly clamped.   The added mass, ex- 
pressed as a ratio of the plate mass, varies in discrete increments 
ranging from 0 (an unloaded uniform plate) to 4.   Results obtained by 
analog simulation methods which have been experimentally verified are 
di&;iu''.yed graphically in parametric form and are suitable for use by 
designers. 

INTRODUCTION 

In the structural design of physical sys- 
tems, problems which involve equipment 
mounted on a stud-supported panel are fre- 
quently encountered. A typical problem might 
involve shock and vibration isolation of a sys- 
tem in which the dynamic characteristics of the 
equipment-panel configuration are important. 
The fundamental modal frequency is often of 
primary interest. In partial response to this 
design problem, this paper considers the de- 
termination of the fundamental modal frequency 
of a corner-supported rectangular plate with a 
geometrically centered concentrated mass. 
The solutions are obtained by analog simulation 
methods and are presented in parametric form 
suitable for use by designers. The parametric 
variation includes the aspect ratio of the plates, 
the boundary restraint, and the added lumped 
mass. Such solutions are substantiated by re- 
sults of laboratory experiments. 

PROBLEM DESCRIPTION 

The idealized model is assumed to be a 
homogeneous, thin, elastic plate of rectangular 

geometry (see Fig. 1) with a lumped mass at 
the geometric center. The governing equation 
of motion is assumed to be of the form 

DV2 V2* + mw =   f(x,y,t) (1) 

where w is the plate deflection from its static 
equilibrium position; m is the plate mass per 
unit area; and 

d2w 

dt2 

D = 
EhJ 

12(1-^) 

and 

v2 . Ü . 11 
3x2       3y2 

The plate flexural rigidity D contains the Young 
modulus of the material E, the plate thickness 
h, and the Poisson ratio v, while the del oper- 
ator v defines spatial derivatives involving 
rectangular geometry. 

*Mr. Schoessow is now with the Aerospace Corp., El Segundo, Calif. 
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Fig. I.    Plate geometry 

To calculate the desired modal frequencies, 
OK!« seeks solutions to the characteristic equa- 
tion for the homogeneous form of Eq. (1), noted 
as 

v4 • + -5- * = o 

subject to the boundary conditions 

w(0,0,t)^ 

«(O.b.t) 

«(a,0,t) 

w(«,b.t)J 

(2) 

y -- o 0} 

"„(O.O.t)^ 

"„(O.b.t) 

l<yy(a,0,t) 

My>.(".b.t)J 

and the mass constraints 

> = 0 (4) 

_/•    b     \ /-.    Ax   b     \ /a    Ax   b    \ 

y\2, .•»     2 ' V       y\'' 2     2 "7 
(5) 

Here, M„ and M    define plate bending mo- 
ments and AM refers to the mass at the center 
of the plate which is distributed uniformly over 
the dimensions Ax, Ay.   The boundary conditions 
quoted by Eqs. (3) and (4) are those for simply 
supported corner supports.  For clamped cor- 
ner supports, one requires the boundary condi- 
tions of Eq. (3) -nd those for the slope given by 

^„(O.O.t)-) 

e„(o.b,t) 
>■- o 

eyy(a.o.t) 

<L,(a.b.t)J 

(6) 

METHOD OF SOLUTION 

In this paper the modal frequencies are 
determined by electrically simulating the plate 
configuration and measuring the fundamental 
resonance. The network used is a passive ana- 
log simulation [I] which corresponds mechani- 
cally to a lumped parameter representation and 
mathematically to a finite-diuerence model. 
The difference grid is a uniformly spaced 9x9 
mesh extending over the complete plate. Solu- 
tions considering finite difference models are 
discussed in Refs. 2 and 3; solutions involving 
an energy formulation are commented upon in 
Ref. 4. 

The analog model physically consists of an 
interlacing rectangular grid of Bernoulli-Euler 
beams coupled by torque tubes with attached 
masses at the beam intersections. It is topo- 
logically similar to the physical configuration 
and assumes mechanical-electrical equivalences 
of force = current and velocity = voltage. 
These networks are such that mass - capaci- 
tance, flexibility - inductance, and viscous 
damping * resistance. The spatial geometry 
and thf required spatial differentiations are 
accounted for by properly interconnecting mul- 
tiwinding transformers.  Boundary conditions 
are accounted for by opening or shorting the 
circuit at appropriate positions so that bounda- 
ries, at irregularly positioned support points, 
can be treated with ease.  Since mass and stiff- 
ness properties are accounted for by the ca- 
pacitors and inductors, nonuniform distributions 
likewise may be treated most efficiently if first- 
order difference approximations are acceptable. 

PHYSICAL EXPERIMENTS 

Laboratory experiments were performed 
on six aluminum plates with aspect ratios of 
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■/b = 1.0, a/b = 1.5, and a/b - 2.0. These 
plates had thicknesses of h = 0.0625 in. and 
h - 0.125 in. The corners of the plates were 
clamped for the first series of experiments and 
simply supported for the second series of ex- 
periments. The added mass An ranged over 
the interval 0 £ Am/M < 4, where M is the total 
mass of the basic plate. A total of 12 sets of 
data were taken for comparison with the analog 
results. 

The plate dimensions were 9 in. sq, 9 in. 
by 13.5 in., and 9 in. by 18 in. Each plate size 
was tested in t^vo thicknesses:  0.0625 in. and 
0.125 in. The plates were made of 6061-T6 
aluminum so that E = 10.5x10' lb/in.2, p = 0.10 
lb/in.3 and v - 0.3. The concentrated mass 
loads were applied over a 1-sq-in. area in the 
centers of the plates and were secured to the 
plates with dental cement. 

The clamped condition was accomplished 
by sandwiching the comers of the test plate be- 
tween hardened aluminum blocks. The block- 
plate-block sandwich was clamped to "C" chan- 
nel rails that were bolted to a heavy concrete 
foundation. This provided both zero deflection 

and zero slope at the comer supports as re- 
quired for clamped boundaries. This setup is 
shown in Fig. 2. The fundamental frequency of 
vibration of the panels showed a high degree of 
sensitivity to the clamping force. The proce- 
dure was to "tune" the unloaded panels to the 
theoretical natural frequency by adjusting the 
clamping forces, then leaving these forces un- 
disturbed while adding the masses to the center 
of the panel. 

The test setup for the simply supported 
comers was less involved and consisted of 
resting plates on the points of No. 6 finishing 
nails that had been driven through a predrilled 
piece of 1-in. plywood (see Fig. 3). The cor- 
ners of the plates were center punched where 
the nail points made contact to ensure plate 
contact at these locations during the experiment. 
This arrangement precluded any attempt at 
tuning the fundamental modal frequency of the 
unloaded plate. 

Figure 4 shows a block diagram of the in- 
strumentation uted to measure the fundamental 
mode of vibration of the plates. This instru- 
mentation is listed in the Appendix. The test 

Fig, 2.    Test setup for clamped corners 
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Fig. 3.    Test setup for point-supported corners 

oeclliator controlled the horizontal sweep en 
the oscilloscope and the filtered output of the 
accelerometer supplied the vertical signal. 
T!» test plate was excited by gently tapping it 
with a soft rubber mallet; the frequency ana- 
lyzer was set on its narrowest bandwidth (6 
percent) and tuned for maximum output. This 
filtering operation eliminated all modes but the 
fundamental, as well as high frequency disturb- 
ances caused by striking the panel with the 
mallet. 

To measure precisely the frequency of the 
fundamental mode of vibration, a test oscillator 
was connected to the horizontal input of the os- 
cilloscope. A circular Lissajous pattern then 
was formed by adjusting the oscillator frequency 
until It coincided with that of the panel. Since 

this pattern is a function of the relative ampli- 
tude and phase of the two signals, it reduces to 
a circle when the siguals are of equd amplitude 
and either 90 or 270 degrees out of phase. In 
general, a lint is formed when the signals are 
either in phase or 180 degrees out of phase. 
and an elliptical pattern is formed with other 
combinations of relative phase and amplitude. 

RESULTS 

The results of both the analog simulation 
and experimental studies are shown by Figs. 5 
and 6. These figures are families of curves 
(in the aspect ratio a/b) plotted as a function of 
the frequency ratio f i,/f„ vs the mass ratio 
Am/M.  The term f,, is the fundamental modal 

Miiinturf! 
Accel« rometei 

n Teut 
put« 

Charge 
Amplifier 

Bandpaas 
Filter 

Teat 
Oeciilator 

Vertical 
Input 

Oacilloacope 

Horizontal 
Input 

Digital 
Readout 
Counter 

Fig. 4.   TciJt mstrumentatiom setup 
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Fig.  6.    Effect of a concentrated mass on the fundamental frequency 
of rectangular plates rigidly clamped at the corners (analog results) 
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frequency of UM pUto-nuM configuration while 
tte frequency fM is 

'-■f^[(ä'-(f)1 cp«. . = I.    (8) 

which la noted u the fundamental modal fre- 
quency of a uniform, rectangular plate simply 
«upported at aU odf»«. A comparleon of the 
experlBMtal and analog results shows CIOM 
agrecasst; moreover, the results for the un- 
kMded plate agree almost exactly with those 
shown in Kef. I. The behavior of the plate- 
man system over the range of masses added 
for both boundary restraints is as expected; 
that is, the fundamental frequency decreases 
with an Increase In Aa. 

For a given aspect ratio, f u/f „ appears 
to approach an asymptotic value as the ratio 
tm/M p-ows larger. Such a value may be inter- 
preted as that tn which torn distributed mass of 
the plate becomes unimportant relative to the 
added mass Aa, and the composite conflgura- 
tlos behaves dynamically as a single-degree- 
of-freedou system. Experimental studies on 
clamoed corner plates shovsd that additional 
masses (5 s AB/M £ 7) caused in increase in 
the fundamental frequency. This suggests plate 

membrane forces and/or large deflection phe- 
nomena are acting to stiffen the plate. Such 
results cannot be accounted for by the analog 
results as the networks are based upon 
Bemoulli-Euler theory implicit in Eq. (1). 

Suppose, for example, one desires to esti- 
mate the fundamental frequency of a thin, uni- 
form, ahiminum plate of dimensions • = b = 10 
la. with rigidly clamped corner supports, a 
geometrically centered mass with Aa/c « l, and 
a thickness h ■ 0.0625 In. From this data, 

D = 23S lb-in. 

■ =  1.625 x W' Ib-iecVin.* 

so that 

-■••it'lK»""- 
From Fig. 6 where a/b= 1.0 and Am/M = l, 

f. 

and 

0.3, 

f,, = 0.3« 119 = 35.7 cpt. 
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AppeitdiA A 

LIST OF TEST INSTRUMENTS 

OuciUoscopfc: 

Test oscillator 

Tektronix 545, CA plug-In 

Hewlett Packard 2C0 CD 

Charge amplifier:  Unholto Dickie Model 11 
Series 

Accelerometer: Unholtz Dickie Model 2E5 

Frequency analyzer:   Bruel & Kjaer 2107 

Counter: Hewlett Packard 5216A 
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DISCUSSION 

H. Saanders (G.E. Co.): In the analytical 
work, what method did 70U use to determine the 
frequencies? 

Mr. Schoessow: I do not understand. We 
were comparing analog computer results to ex- 
perimental results. 

Mr. Saunders: Have you given any thought 
to getting an analytical solution and checking 
with the analog results? 

Mr. Schoessow; I think that is what 
prompted the entire exercise. The analytical 
solution just is not easily obtainable. 

Mr. Saunders: No, you would have to use 
the Rayleigh-Ritz or a similar method to ob- 
tain the solution and even then there would be 
problems. 

Mr. Schoessow: Yes, it is an extremely 
complex thing. Dr. Barnoski did all the analog 
computer results and the theoretical analysis 
that led to that point. I conducted the experi- 
mental investigation, so that I personally have 
not gone through ail of these trials. He said 
that it was certainly much easier to do on the 
analog computer. You can dial in varying 
masses very easily. All of these parameters 
are very easily adjustable since you have pas- 
sive elements and they are all coupled with 

transformers. You can get a very quick simu- 
lation and change parameters vary easily. 

Mr. Saanders: Have you given any thought 
tu using other than a constant uniform thickness 
plate? 

Mr. Schoessow: I have not worked this 
problem. I know there have been several 
papers presented here in the last few days that 
are well handled by digital approaches for 
complex structures or structures that vary 
over their areas. 

D. Stewart (McDonnell Douglas Corp.): Is 
the concentrated mass uniformly distributed 
over the plate or lumped in the middle? 

Mr. Schoessow: I am sorry I failed to 
mention that. The concentrated mass was as- 
sumed to be pat in over one element of the 
plate. We had a 9 by 6 in. grid so it would be 
very close to attachment at a point or a very 
small area. The experimental results were 
also obtained by putting this over a 1-sq-in. 
area. We were using plates that were 9 by 9, 
9 by 13-1/2 and 9 by 18 in. 

Mr. Stewart; Are the results, then, for the 
mass located at different spots on the plate? 

Mr. Schoessow: No, it is a centrally lo- 
cated mass, and it is only for the fundamental 
mode. 
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VIBRATION OF ECCENTRICALLY STIFFENED PLATES 

B.  R. Long 
Defence Research Establishment Suffield 

Defence Research Board 
Ralston, Alberta, Canada 

Analysis of plates with eccentric stiffening involves simultaneous solution of plate bena- 
ing equations, plane stress equations, beam equations, and displacement compatibility 
equations.   This solution does not seem possible in the general case; however, such a 
solution can be obtained for the free vibration dynamic behavior of stiffened rectangular 
plates having one set of parallel stiffeners and having two simply supported edges or- 
thogonal to the stiffener direction.   This solution allows direct comparison with frequen- 
cies and mode shapes obtained by other methods, such as the equivalent orthotropic plate 
approach. 

In this paper, displacement functions are assumed in the stiffener direction, satisfying 
the simply supported boundary conditions.   Application of the governing equations to each 
plate segment and to each stiffener leads to a set of homogeneous equations involving un- 
determined mode shape parameters.   Coefficients of the equations contain the frequency 
parameter OJ.   As the determinant of these coefficients must be zero for nontrivial solu- 
tions, a computer search routine is used to find values of u that cause singularities of 
the determinant. 

Because of the large number of variables in the analysis, general quantitative results 
are not presented; however, calculated frequencies and mode shapes are shown for some 
specific examples.   These results are compared with those obtained by orthotropic plate 
theory.   Increasing stiffener eccentricity and spacing are found to increase the discrep- 
ancy between frequencies predicted by orthotropic theory and those predicted by the 
beam-plate theory, with the former being larger in the examples considered. 

For a given plate configuration in which only the stiffener depth is varied, it is shown 
that certain frequencies are convergent, presumably because the corresponding mode 
shapes become identical in the limit. 

INTRODUCTION 

Stiffened plating forms a structural ele- 
ment of practical importance and has therefore 
been the subject of a number of investigations; 
however, exact analytical solutions have been 
obtained only for highly idealized situations. 
Theoretical considerations often involve treat- 
ing the structure as an equivalent orthotropic 
plate thai reflects the combined properties of 
plating and stiffeners. A primary objection to 
this approach is that it probably will not be 
valid for wide stiffener spacing.  Other ap- 
proaches involve treating an infinitely long 
panel or a panel with a single stiffener. 

Statically loaded, rectangular plates stiff- 
ened in one direction and having two opposite 
edges simply supported were analyzed by Von 

Karman [1] who neglected the bending rigidity 
of the plating. Investigations were carried out 
by Reissner [2] and Yamaki [3] on panels of in- 
finite length. Clarkson [4] studied the case of a 
long rectangular panel with stiffeners in one 
direction and having a single concentrated load 
applied to one of the stiffeners. Smith [5] 
solved the problem of a statically loaded, rec- 
tangular panel with a finite number of stiffen- 
ers in one direction. 

Among the earliest studies of the dynamics 
of stiffened plating were the Investigations of 
Hoppmann, Huffington, and Magness [6]; Hopp- 
mann and Magness [7]; and Huffington and 
Hoppmann [8]. These analyses used orthotropic 
plate theory based on experimentally derived 
rigidities as suggested by Hoppmann [9].  Kirk 
[10] used Isotropie plate mode shapes with the 
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Rayteich metbod td determine the frequencies 
of {saoela with many ■tiffeoere or one MüSeaer. 
Wah [11] considered free vibraUons öf a r«c- 
tansular plate having a finite mualMr of stUfen- 
ers of sero eccentiiclly. lilluJaa «nd McElman 
[IS] investigated the dynamic behavior of a 
stiffened rectangular panel by "smearing out" 
the stiffener effects. 

Within the limitations of small deflection 
elasticity theory, the aim, in this paper, is to 
develop an exact solution to the problem of free 
vibrations of a stiffened rectangular plate hav- 
ing two edges simply supported and having one 
set of eccentric stiffeners normal to the simply 
supported boundaries. 

NOMENCLATURE 

a.b      Plate segment dimensions 

d      Half sUffener width 

tt      Stiffener eccentricity 

f.a.t.Q     Stress resultants at edge of plate 
segment 

h 

t 

u.v,« 

ü.v.w.Ö 

x.y.i 

x.y.t 

'i A« I 
'. B4| 

D 

EI,.Ely 

J 

T 

u.v.x 

ü.v.x.e 

/9A 

Stiffener depth 

Plate thickness 

Plate «displacements 

Beam displ? cements 

Plate coordinates 

Beam coordinates 

Coordinates for entire panel 

Coefficients in plate segment dis- 
placement expressions 

Plate bending rigidity 

Stiffener bending rigidities 

Stiffener torslonal rigidity 

Time 

Plate displacement functions 

Beam displacement amplitudes 

Roots of characteristic equation 
for X 

v Poisson's ratio 

p Plate mass per unit area 

ph Stiffener mass per unit length 

u Frequency parameter 

DERIVATION OF EQUATIONS 

Plate Equilibrium 

A st'ffened plate typical of the type to be 
considered in this paper Is shown in Fig. 1. 
Each plate segment is assumed uniform and 
Isotropie and, for simplicity, plate segments 
are assumed to be Identical to each other. 
These comments apply to the stiffeners as well. 
Coordinates x, y, and x for plate elements and 
x, y, and i for stiffeners are shown in Fig. 1, 
and corresponding displacements are denoted 
by u, v, and w for plates and a, v, and s for 
stiffeners. Stiffener eccentricity Is defined by 
e, ^ (h - t )/2 where h is the stiffener depth 
and t is the plating thickness. Consideration 
of vertical equilibrium of plating leads to the 
well-known plate equation 

v«, + £ • = o (i) 

where p is the mass per unit plate area, D is 
the plate bending rigidity, V4 is the biharmonlc 
operator, and a dot Infers differentiation with 
respect to time. Noting that the boundaries 

y» 

1—t ~i > ^ 

Fig. 1.   Typical stiffened plate 
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y = o,b are »imply supported, the free- 
vibration deflections «ire assumed in the form 
w = X(x) sin ayeUT, Where a = mw/b, and 
** 1,2  

Substitution in Eq. (1) leads to a general 
solution for X; namely, 

X = A, cosh Kx + AjSinh \x +  Aj cos/Sst + A4 »infix 
(2) 

«here 

(- i?> »2), 

and 

"{'ft- •') 
1/2 

Since only small deflections are considered, the 
in-plane plate motions can be considered sepa- 
rately from the bending. Equilibrium consider- 
ations lead to the governing equations 

+ a'u    i 3lv 

~+I(l-.)—+I(l + v)_=0. 

when in-plane inertia effects are ignored. 
Membrane displacements are assumed in the 
form 

(3) 

(4) 

u =  V{x) sin aye 

v  -  V(x) cos aye 

ivT 

iuT 

(5) 

(6) 

Substitution of Eos. s3) and (4) into Eqs. (5) and 
(6) leads to general solutions for u, v as 

Fig. 2.  Forces on 
stiffener   element 

along xo in the itb plate segment and sub- 
scripts j refer to edge x= a of the jth plate 
segment. The shearing stress resultants s,Q, 
normal stress resultant f, and bending mo- 
ment m can be calculated from the plate dis- 
placements u, v, and w.   Considering moment 
equilibrium in the x-i  plane force equilibrium 
in the x, y, and z directions, four equations 
are obtained involving the stiffener displace- 
ments ü, v, i, and 8. where 9 is the torsional 
displacement.  From moment equilibrium 

where J is beam torsional stiffness and 2d is 
the stiffener width. 

U = B, cosh ax ♦ B]ax cosh ax + 6, sinh ax 

+ B4 ax sinh ax (7) 

V = (yhj+ Bj) cosh ax + B4 ax cosh ax 

+ (B, + >H4) sinh ax + B, ax sinh ax , 

where y = (3- o/(l» v) and v is Poisson's 
ratio. 

(8) 

Considering forces in the x direction, 

'' dy4        '       ' \ dy        dy / 

where El, represents the atiffener bending 
stiffness in the x- y plane. Equilibrium in the 
y direction requires 

Stiffener Equilibrium 

Forces applied by the plating on a stiffener 
element (per unit length) are shown in Fig. 2. 
Here subscripts i refer to stress resultantc 

d'jF '       l 

Consideration of forces in the z direction 
leads to 
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mm 

(W) 
whtrt U, U tht beam bending stiffness In the 
I-1 pknt and P1 IS the mass of stlffener per 
wdllsnfth. 

Beam displacements are assumed In a 
form satisfying the slmpt» support boundary 
eoodltlOGS, namely 

•in ay ai e 1»T 

V =  V CO« aytii e l«T 

• = f sin aytii e 

6-9 sin ayoi e 

UT 

i«T 

(13) 

Making the appropriate substitutions into 
Eqs. (9) to (12) and writing these equations for 
each of the N stiffeners leads to 4N homogene- 
ous transcendental equations involving the con- 
stants A.B for each plate and the constants 
0,v, ... for each stlffener. 

These equations are applied to all edges of 
plate segments which terminate at a stlffener. 
At the right and left hand edges of the stiffened 
panel, boundary conditions must be applied to 
the plate deflections. Though others could be 
used, boundary conditions chosen (or the first 
plate segment, are 

•l..o r 0 

f|,.os 0 

and 

ix-o = -K — 

(16) 

where K is a constant describing the support 
stiffness. Identical conditions apply along the 
edge x = a of the last plate segment, except 
that for the last condition, 

(17) 

Continuity of Displacements 

Considering the edge x - o of a plating 
segment, for continuity of deflection, 

Making the appropriate substitutions in 
Eqs. (14) to (17) results in a set of 8(N+ i) 
homogeneous equations.  Thus, for a plate with 
N stiff eners there are 4(3N+ 2) simultaneous 
equations in the coefficients A,B,V, etc. 

I x>0 e.e 

3y dy 

♦ do 

and 

3» 

dx 
e 

Similarly for the edge «= «, 

u|„. - ü - *me 

M 0 'By ^ 

'I... de 
and 

3x 

Solution for Frequencies and 
Mode Shapes 

Clearly, for a nontrivial solution, the de- 
(14) termlnant of the coefficient matrix must be 

zero. A crude but effective method of solving 
for the natural frequencies Involves a trial and 
error computer solution.  Essentially, u, the 
frequency parameter, is plotted against D(u), 
the d termlnant value, and zero values of D(") 
are looked for. This can be accomplished by 
plotting D(") for successively smaller incre- 
ments of <.i until singularities of the determi- 
nant have been isolated. Within these ranges, 
convergence on the frequencies is facilitated by 
a linear Interpolation procedure.  For the ex- 
amples presented below, determinant values 
were found by the standard IBM subroutine 
MINV.   For problems involving larger matrix 

(15) orders, a more efficient approach should be 
sought, as the computer time required by this 
method would become prohibitive. 

To find mode shapes corresponding to par- 
ticular frequencies, one of the unknown (nonzero) 
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displacement parameters may be assumed ar- 
bitrarily and the others found In terms of this. 
Computer solution for the examples presented 
below used the standard IBM subroutine SIMQ. 

Examples 

Natural frequencies and mode shapes were 
found for three stiffened panels, each of which 
had outside dimensions of 10 in. by 15 in. All 
edges were taken as simply supported. The 
panels had either one, two, or three stiffeners 
uniformly spaced parallel to the short side. 
Stiffeners and plating were assumed to be mild 
steel (E = 30xl06 psi, v ■ 0.3} with the plating 
0.1 in. thick. Stiffeners were taken as 0.25-in. 
wide and frequencies and mode shapes were 
calculated for various depths of stiffener, i.e., 
for varying eccentricity. In the following sec- 
tions the mode frequencies are referred to as 
fnB where m is the number of half sine waves 
in the y direction and n is the number of half 
sine waves in the x0 direction for an unstlffened 
panel. 

Figure 3 shows the frequencies f,,, f,,, 
f, j and f,, for the panel with one stiffener. 
Figures 4 and 5 show these same results for 
panels with two and three stiffeners, respec- 
tively.  Frequencies corresponding to those 
shown in these figures were calculated accord- 
ing to the orthotropic theory of Mifculas and 
McElman [12].  Figure 6 represents the dis- 
crepancy in these calculations, expressed as a 

lOOOr 

700- 

400- 

i 
2001- 

100 
02 03 

ECCENTRICITY (in) 

Fig. 3.  Frequencies for 
plate with one stiffener 

percent of the frequency by the current method, 
for the fundamental frequency of each of the 
panels. 

The same comparison is made in Fig. 7 
for four natural frequencies of the plate with 
two stiffeners.  Figure 8 shows the variation in 
the f,, mode shape in the x- z plane for the 
panel with two stiffeners. 

lOOOr 

0.1 02 03 

ECCENTRIOTV (in) 

04 05 

Fig. 4.   Frequencies for plate with two stiffeners 

49 



2000 

1000 

5   700 

u.   400 

200- 

100 0 1 
_l_ 
02 03 

ECCENTWCITY (In) 

04 01 

Fig. 5.   Frequencies for plate 
with  three stiffeners 
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Fig. 6. Difference in fundamental fre- 
quencies found by orthotropic theory and 
beam-plate theory 
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CONCLUSIONS 

The method outlined in this paper provides 
a straightforward approach to the determination 
of mode shapes and natural frequencies of a 
class of stiffened plates.  Because of the large 
number of variables involved in the analysis, it 
is impossible to present general quantitative 
results; however, some general observations 
m?y be made: 

1. Natural frequencies of modes with nodes 
at stiffener locations do not increase signifi- 
cantly with stiffener eccentricity. This can 
result in a frequency f im greater than a fre- 
quency f jm when i ^ j.   For example. In Fig. 
3, f,, becomes greater than f .. 

2. Certain of the natural frequencies tend 
to converge as stiffener eccentricity becomes 
large, as illustrated in Figs. 4 and 5. 

&. Frequencies predicted by the orthotropic 
theory of Mikulas and McElman [12] differ 
greatly from those of the current beam-plate 
theory when the stiffener spacing and eccen- 
tricity are large.  The same is true of mode 
shapes predicted by the orthotropic theory as 
these are sine functions in the x0 coordinate. 

4. For problems involving a panel with 
many stiffeners, it would be necessary to use 
a more efficient method to find the natural fre- 
quencies, as computer time required by the 
method described would become excessive. 

lOOr 

i 10- 

0 2 03 

ECCENTRICITY  (ini 

Fig. 7. Difference in frequenciea found 
by orthotropic theory and beam-plate 
theory for plate with two stiffeners 

Alternatively, reasonable approximations to the 
natural frequencies for this case might be ob- 
tained by assuming a plate of infinite length. 

>0l3 

Fig. 8.    Variation in f.,  mode shap > with 
eccentricity  for plate with  two stiffener« 
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DISCUSSION 

Mr. Forkois (NRL):  Your sketch showed 
an integral stiffener. Will this method be ap- 
plicable to bolted stiffeners, riveted stiffeners, 
welded stiffeners, or solid single stiffeners?  I 
think there would be some differences. 

Mr. Long:  Yes, I think so too.  I would ex- 
pect that it may be reasonable for a welded 
stiffener, but certainly questionable for bolted 
or riveted stiffeners. 

W. Wassman (NOL):   I noted that the accu- 
racy decreased with the eccentricity of the 
stiffeners and that the mode shapes changed 
with the eccentricity of the stiffeners.  This 
leads me to suspect that the assumed mode 
shapes were leading to the loss of accuracy. 
Did you investigate the possibility of assuming 
a more complex mode shape? 

Mr. Long:  No.  Of course, the reason one 
assumes the simple supports is to get these 
nice simple sine functions In the Y direction; 
otherwise it Is difficult to satisfy the governing 
equations. 

D. Egle (Univ. of Okla.):  I have a question 
about the continuity conditions.  You didn't men- 
tion just what they were.  Do you use the conti- 
nuity equations in which the normals in the 
plane and the normals in the beams remain 
normal to the plate ? Do you assume a straight 
line distribution, essentially? 

Mr. Long:  Yes. 

Mr. Egle:   There has been some similar 
work on ring stiffened shells at Southwest Re- 
search Institute.  They found, in essence, the 
same thing that you did — that ths average 
smeared analysis was not valid for high end 
numbers or circumferential wave ni"nbers. 
They made one interesting point which I wonder 
If you have tried.  The frequencies when the 
rlngfe are essentially infinitely rigid are very 
similar to the frequencies 'or a shell that is 
simply supported between twr rings.  Did you 
compare your frequencies for large eccentrici- 
ties with the frequency of a simply supported 
plate, the width of which would be just the dis- 
tance between two stiffeners? 
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Mr. Long: I have looked into this type of 
thing but I have not compared it to a fully simply 
supported place. I looked into simple supports 
on three sides and a fixed edge on the other 
which, for example, is what the two outside 
panels in this example would effectively be. I 

looked into the case of two edges built in and 
two edges simply supported which is what the 
inside panel here would be. You get something 
somewhere in between for the fundamental 
mode shape. 
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CRACK DETECTION IN A STRUCTURAL BEAM 

THROUGH CROSS-CORRELATION ANALYSIS 

F.  Baganoff 
Baganoff Associates, Inc. 

St. Louis, Missouri 

and 

D.   Baganoff 
Stanford University 
Stanford,  California 

A new method fo.   nondestructive structural testing is being developed, and when per- 
fected, the modal vibrations of a simple primary structure, such as a torque box, will be 
monitored in response to   . broadband, mechanical force input.   The resulting electrical 
signals, ssnsed at two or more preselected points, would be cross correlated to obtain 
computerized engineering curves.   This study concludes that any changes due to fatigue 
that are introduced into the structure will produce corresponding changes in the station- 
ary process and will be reflected in the fingerprint curves.   This standard fingerprint 
will be stored for later comparison with test fingerprints obtained for structures with 
suspected structural fatigue.   Further, it is expected that in the future an average curve 
obtained for a suitable number of production items may be used as a basis for qualifica- 
tion testing 

In a study that is to serve as a fundamental building block, the modal vibrations for a 
structural beam were both analyzed in the laboratory and modeled mathematically.   Two 
identical beams were used in the e     eriments, but one of the beams had a cross-sectional 
crack placed in it.   Mathematical!     the fissured beam was modeled, as two "lightly cou- 
pled," second-order mechanical systems.    The equations show that at one extreme, that 
is when the fissure is almost through the beim, each pair of symmetric and nonsymmet- 
ric modes about the crack approach each other in frequency.   The cross correlation of 
the two response signals produces a characteristic "beat frequency" envelope on the time 
cross-correlation curve that becomes lower in frequency and amplitude, because of the 
influence of an exponentially decaying function, until it is nonexistent when the beam be- 
comes broken in half.   At the other extreme, when the fissure is very shallow, the or- 
dered set of higher frequency, modal vibrations produces a time cross-correlation curve 
in which the envelope peaks in a uniform manner and then decays to zero. 

The experimental results confirm the uniform peak predicted for the homogeneous beam 
and the predicted "beat frequency" envelope for the damaged beam.   It may be noted that 
these radical departures were obtained for a very shallow crack,   it will be shown that 
"-? cross-correlation function acts as a phase detector and is very sensitive to changes 

the modal frequencies.    To make these findings practical, cross-correlation functions 
th long averaging times will be necessary to insure data repeatability. 

the 
in 
wit 

Continued investigations in this area will deal with the repeat of this basic experiment to 
try to evaluate the coefficients and tc extend these methods to other structural shapes. 
Euch as "T" and "H" beams. 

INTRODUCTION 

This paper presents the results of research 
in a new computerized method for monitoring 
the structural integrity of a beam.   Experimen- 
tally, a homogeneous beam was excited laterally 

by a broadband point force and the resultant 
modal vibrations were sensed by two sensitive 
accelerometers.   Previous experiments in 
other areas had «hown that the time cross- 
correlation function for two random signals 
was particularly sensitive to relatively small 
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changes in component frequencies In the two 
signals. The parallel analytical study showed 
that a computerized computation as this would 
have to be used to detect the small charges in 
t"ie modal frequencies of the vibrating be&m as 
a result of the Introduction of a small cross- 
sectional crack. 

Both the experimental and theoretical re- 
sults show that the time correlation function, 
because of its nature, is an ideal computerized 
output.  For large time delays, this function 
acts as a phase sensitive detector. The method 
would be severely limited if it were not possible 
to compute the correlation points using averag- 
ing times in excess of 20 sec. 

Although the structural beam chosen for 
analysis is fairly uncommon in useful struc- 
tures, it represented a formidable problem for 
analytical study.  The plan is to use the present 
results as a building block in the eventual un- 
derstanding of the prediction of changes in more 
complex structures. It is expected that for 
complex structures the significance of changes 
in the time correlation function will have to be 
developed empirically. 

Research is continuing to analytically pre- 
dict the changes in the time cross-correlation 
function as related tu where, along the beam, 
the crack is located, the extent of the fissure, 
and different end conditions on the beam.   Fur- 
ther work is planned to develop a broader un- 
derstanding for more complicated structures, 
such as "T" or "K" beam construction, or pos- 
sibly a torque box configuration such as that 
found in an aircraft wing. However, it is doubt- 
ful that the on»'* of fatigue in typical built-up 
aircraft structures will be predictable in the 
time cross-correlation functions, except as 
developed empirically. 

A computerized method for continuous sur- 
veillance of the structural integrity of transpor- 
tation equipment has long been needed. With 
the recent advances in the passenger carrying 
capability of the coming commercial aircraft, 
structural surveillance of the airframe and jet 
engines requires greater emphasis on the de- 
velopment of this method. Other needs, such 
as the structural surveillance of bridges, build- 
ing structures. Naval ships, and motor vehicles 
readily come to mind. 

DEVELOPMENT APPROACH 

The object of this investigation was to un- 
derstand the phenomenon behind the cross- 
correlation functions as they pertain to the 

cracked beam. In addition to the two major ap- 
proaches, previouply mentioned, a third and 
less important approach was also taken. In the 
Utter case, cross-correlation functions were 
hand calculated using modal response data ob- 
tained with sinusoidal excitation. Throughout 
thlb work, the comparisons are based more on 
a qualitative than a quantitative nature. 

Parallel experimentation on an aircraft 
stabilizer Indicated that, analytically, a coupled 
modes approach would not be unreasonable. 
The cross-correlation functions, in this case, 
are approximately identical for both positive 
and negative time delays, indicating that a 
standing wave phenomenon probably exists. 
However, the curves are not perfectly sym- 
metrical, suggesting that some traveling wave 
energy may also be present.  Further, the 
imaginary envelope for these functions seems 
to indicate that a beating phenomenon is taking 
place for this typical built-up structure. 

Because of practical limitations, there are 
obvious differences between the mathematical 
model and the experimental setup. The mass 
loading of the beam by the shaker and the two 
accelerometers was found not to be a factor. 
In the experimentation, it was found desirable 
to use a peaked broadband force to primarily 
excite the higher frequency modes.  Also, utili- 
zation of a two-point force input was considered 
but found not to be a factor. The study proposes 
to show that the bunching of the modes at the 
higher frequencies causes the cross-correlation 
function to beat. 

MODEL 

In the case of the beam that is nearly sev- 
ered, the resulting two vibration systems act 
almost independently of one another.  Each 
system bar a fundamental vibration mode with 
a frequency "0, as the two beams are equal in 
length. The introduction of a small amount of 
spring coupling causes the two fundamental 
modes to become phase coherent, and thus, to 
generate two new frequencies, a and ß, com- 
bining both systems into one.  In one instance, 
the phase of the coupled force tends to increase 
the apparent bending stiffness so that "„ be- 
comes ß.   Simultaneously, the component force 
that is out of phase tends to reduce the apparent 
bending stiffness and produce the asymmetric 
modal frequency, a.   The concept of coupled 
modes is a very powerful analytical tool and 
permeates man; bratiches of science. 

Reference should be made to Fig. 1 for a 
drawing of the theoretical vibrating beam. The 
assumptions made are as follows: 
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h-i-H r«« 
'■RACK 

4- -^—J 
Fig. 1.    Theoretical beam experiment 

1. Assume symmetry on the two sides 
(easy algebra). 

2. By placing the crack above a support, 
the solution will not degenerate to nonsense 
when the beam is completely severed. 

3. Locate the two accelerometers at the 
points marked x and y. 

4. Let the shaker be placed at point x and 
designate the forcing function by F(t). 

5. Let x and y represent the deflections of 
the beam at the two points shown. 

The total deflection *-(-(. t) for a beam with 
pinned ends can be expressed as the product of 
a function relating the distance along the beam 
I and of a function expressing time as the vari- 
able [1]. 

*(*.t) = ZXc-e) vn(t). 
n 

The total deflection can be approximated by the 
deflection of the fundamental mode *(*, t) as 
the force is applied at the center of each vibrat- 
ing system. If some higher mode is excited 
such as that which takes place in the experi- 
mentation, then x(-e, t) would represent this 
higher mode. 

The Approximate motion of the two systems 
can be described by the following two coupled 
equations: 

x +   Jyx +  u.0
2(x + fy) =   f(t) , 

y +  27y +   w0
2( t x + y) =   0 , 

(1) 

where 

M = effective mass of beam of length L = 
1/2 true mass 

K = effective spring constant « 48Ei/LJ 

I - moment of inertia of the cross section 

E = Young's modulus 

aluminium:  E ■ 11x10* psl 
steel:  E = 30x10« psi 

« = coupling term, where 0 < e « l, 
that is, € - o for a severed beam 

f(t) = F(t)/ll 

y = damping coefficient, assume y 
small, and 

Define the operator D as follows: 

■*" = (£* »I-v)».     «> 
Then the two equations become 

D(x) f   £«0»y =   f(t), 

D(y) +  fw0
2x =  0 . 

In a like manner, define the operator H as 
follows: 

H(y) .i^^t^)1-^*- (3) 

The two equations become simply 

H[y(t)] = -€u,0' f(t), 

D[y(t)]  -- - eu,0
2 x(t) . 

(4) 

Using standard methods, the first equation 
of Eq. (4) gives the relation between the power 
spectrum of the input, S,r(w), and the power 
spectrum of the second coordinate, syy(u), i.e.. 

|H(i^}l2 Syy(a.) =   - twj Sff(u;) (5) 

where from Eq. (3) 

H(i^) --   [(iu,)' +  *y(i^) ♦ w3]1 -  i*^4 

The second equation of Eq. (4) yields 

D'O"')  Syy(^)  =   - ta.0
2  Sxy(«) , 

where from Eq. (2) 

D*(i^) =  (-i^)2 +  2y(-iv) 

(6) 
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Syytu) la the cross power spectrum, i.e., 
the Fourier transform of the cross-correlation 
function R.^T). 

e-'^R^rJdr 

Kly(T) » ensemble mean of [x(T)y(t + r)). 

From Eqs. (5) and (6), syy(u) can be elimi- 
nated to obtain 

iHCio,)!2 

D*(iu) and |H(ia;)|J can be rearranged and 
written as 

D,(iw) =  (iv'-ai2) -  2170), 

Equations (8) and (10) can be substituted 
Into Eq. (7) to give 

£,y(^) = -^o2sff(a,) 

(ti,,2 - wJ) -  2iyv 

(11) 
If the definitions for a and ß are used, it 

can be shown by using partial fractions that Eq. 
(11) can be written as 

Sxy(u')  '   Sff(ÜJ) 
1/4 

. 472a2 +   (a 

1/4 

2-„,2'1 

2<;y2ai2  ileyui'oüi 

472/32 +  (ß
1-^)2   (^(Z3)     W3)   -I' 

|H(^)|J =[ Oil2)      -    f 2 Ü).4   +   4>2w" (8) 

For zero damping (y = 0), the roots of the 
equation |H(iu)|2 = 0 are given by 

(V - -' a)J) =  t ew,' 

where (a)(ß) stands for the product of the first 
two denominators. As the last two terms are 
of the order y2 and y respectively, while the 
first two terms sue of the order of unity, the 
last two terms can be ignored (as small damp- 
ing is assumed) tc write 

SxA') 
■1/4 

4y2a2  t   (a'-aj2) 

or a2 - ai0
2 (i ♦ t), and « = ♦ w0 vTTT, 

(4 roots x2). 

If small damping {yM0 « l) is assumed 
then it can be expected that the new roots will 
be only slightly perturbed away from the above 
eight roots.  Using the assumption of small 
damping (y/«0 «1), the roots are given by 

v/a1 j   2iay  ,     t jß2 t   2ißy 0) 

where a = w0 vi -« and P    ^0 vTTf (i.e., the 
root» for zero damping). 

In terms of the roots given by Eq. (9) 
|H(iw)|2 can be expressed as 

|H(ia)| 

or 

(a2- 2na - ..2)(a2 t 2 iya- u-') 

(ß2-2iyß-^i)(ß2* 2iyß-^2) 

|H(i^)|2 =   (aU4y2a2   --   ly2*2  ♦   ^4) 

«   (ß* t 472/32- 2ß2^2 * u.4) 

or 

(10) 

H(.a)|2 =    4>2a2M-J- .•1)^\*y2ß1*(ß1-^)2 

1/4 

4y2/32 t  (/32-^2)  J 
Sff(-).     (12) 

Assuming white noise for Sff(u<), the Fou- 
rier transform of sxy(^) can be performed by 
using standard tables.  The operation is labori- 
ous unless the simplifying assumption, y/a0 « i, 
is utilized. The desired result simplifies to 

ß(y)' 

iß)2 

2
^>2     cos  (ßr- 

4aJ(y)2 

2(a)J 
CO!«    ( IT ) (13) 

(a)' 

Equation (13) represents the general solu- 
tion to be compared in its present form with 
the experimental curves for the undamaged 
beam.  Note that Eq. (13) has two terms:  one 
involving the perturbed frequency ß and the 
other a.   Each term has a maximum value at 
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r = o, but Rxy(T) does not necessarily peak at 
7 = o because of the minus sign preceding the 
second term. The minus sign can be interpreted 
as owing to the fact that a was designated as 
the asymmetric frequency, or in other words, 
the beam deflections x and y are 180 degrees 
out of phase. Conversely, since ß is the sym- 
metric frequency, the two deflections are in 
phase. 

Thus Eq. (13) becomes 

1       " ^o T f 
4w0y

J 

If more modes than just the fundamental 
mode are considered, then it is reasonable to 
expect that Eq. (13) will contain more of these 
terms. The principle of superposition should 
apply so long as there is no damping coupling 
of modee.  In the synthesized cross-corrrlation 
curve based on modal response data, three such 
terms were considered and the resulting syn- 
thesized curve gave a good approximation to the 
experimentally derived curve. 

Equation (13) for a large crack (t « l) 
can best be investigated in another form.  In 
this case, the exponential terms and the coeffi- 
cients reduce to one another: 

or 

-. vT ß ^NTTT 

However, the small terms in the two arguments 
must be retained: 

cos (/V)  co~. 

COS ( 'IT )   cos 

+ tr  -  cos (■4)- 

il    —   COS 

-1 
sin {: '" U ""V ' 

(14) 

Note that this result is for small damping 
(>   j, « i) and for a deep crack (t « i). A 
bi«cniatic plot of this cross-correlation func- 
tion is shown in Fig. 2. 

The ac waveform "or > of the function 
can be seen to be amplituuj modulated by the 
term sm [('/2).0T] \B ( becomes smaller, 
the peak for the first half cycle moves further- 
out in T value. In the limit, the exponentially 
decaying function with the exponent [-(y/2)^0

r] 
keeps the envelope from ever peaking, and thus, 
the cross-correlation function is zero for all 
values of T .   This decaying term is present 
because « and /; are really composed of narrow 
bands of frequency components owing to the 
broadband excitation. When the sensor located 
on the broken sect» on is no longer responding 
to a force input, it would be expected that the 
cross-correlation function would be zero for 
all values of T . 

exPO^EN. , :-*-, T 

Fig. Z.    Theoretical cross-correlation curves 
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EXPERIMENT 

For both the homogeneous and the cracked 
beam, experimental crocs-correlation functions 
were derived In the laboratory to be compared 
with the theoretical results discussed previ- 
ously. The physical experiments differed in a 
number of respects from the theoretical model 
because of practical limitations. In each case 
the beams were excited laterally by a "peaked" 
broadband force derived from an electro- 
mechanical shaker physically mounted near 
one end. Two accelerometers, one mounted on 
each side of the crack, sensed the accelerations 
of the beam. The resulting two random signals 
wer« applied to a hybrid cross-correlation 
computer for near real-time analysis. A photo- 
graph of the experimental setup can be seen in 
Fig. 3. 

The physical approximations that had to be 
made are given in the next few paragraphs. To 
begin with, cross-correlation functions were 
obtained and compared for the two beams, while 
still structurally intact, to check their dynamic 
responses at the higher modal frequencies. 
The mass loads on the beam by the shaker and 
the accelerometers were expected to distort 
the vibration modes. Certainly, there were 
other second-order effects, such as the static 
deflection of t.« beam owing to gravity, that 
were ignored in this series of experiments. 
The deflection signals seen on an oscilloscope 
were only slightly distorted probably also 
owing, in some part, to the local imperfections. 
The knife-edge supports at each end performed 
satisfactorily, judging from the same oscillo- 
scope displays. 

The fundamental mode frequency was ex- 
perimentally determined to be approximately 

4.1 Hz, which is consistent with th« thinness of 
the beam. Their material was aluminum 0.5 by 
1.0 in. In cross section and 6 feet in length. 
The «tent of the crack can only be qualitatively 
defined as extending a combined distance from 
each side of approximately 20 percent of the 
cross-section distance. The vibration modes 
of interest in these experiments are for the 
abstract numbers (n ■ 20 through 25). The 
amplitude and frequencies of the responses ob- 
tained, using sinusoidal excitation, and fo    oth 
the damaged and undamaged beams, can be 
found listed for reference in Table 1. As an- 
other piece of reference information, the band- 
width at the three decibel poinis was approxi- 
mately 20 Hz, giving a damping coefficient (?) 
of approximately 0.005. One may note that in 
the theoretical discussion it was concluded that 
a symmetric mode about the fissure would de- 
crease in frequency and that an asymmetric 
mode would increase in frequency. By looking 
at Table 1 and Fig. 4 together, these general 
conclusions can be drawn. 

The rim of the inertial shaker, which had a 
diameter of 4.5 in., was fastened at two points 
to the beam:  2.5 and 6.75 in. from the end. 
Whether these locations are nodes or antinodes 
for the various vibration modes can be learned 
from Fig. 4, which shows the locations for the 
forces, as well as for the two accelerometers 
superimposed on the mode shapes. The accel- 
erometers were located 18 and 32 in. from the 
end, while the crack was introduced at a dis- 
tance of 25 in. from the same point. 

The broadband force bad three predominant 
peaks with the largest one, by far, existing at 
2000 Hz. The frequency response for the shaker 
can be seen in Fig. 5. This spectral shape is 
not unlike that found exciting a structural 

Fig. 3.   Cracked beam experiment 
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TABLE 1 
Homogeneous and Cracked Beams 

Homogeneous Beam Cracked Beam 
n 

Freq. 
(Hz) 

RMS. RMSy Phase 
(') 

Freq. 
(Hz) RMS. RMSy Phase n 

20 

21 

22 

23 

24 

25 

1841 

1936 

2116 

2345 

2540 

0 

3.4 

4.2 

3.6 

0.5 

0.5 

0 

3.3 

6.0 

4.0 

0.4 

0.3 

0 

180 

0 

180 

180 

162. 

1788 

2177 

2496 

2482 

2.3 

1.6 

0 

1.9 

0.7 

1.6 

0.9 

0.9 

0 

2.9 

0.5 

0.6 

0 

0 

180 

180 

180 

CRACK 

i ia ft 
BEAM   LCN6TH   IN   INCHES 

NmtO 

Fig, 4.    Theoretical mode shapes 

IOO 1,000 
fHEOiUENCr   IN   HZ 

iqooo 

Fig. 5. Force frequency response 
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member in a practical situation. Different 
spectral shape« for the input force will produce 
different cross-correlation results, but this is 
of importance only analytically. 

The two accelerometer signals were ap- 
plied to a hybrid cross-rorrelation «vstem and 
were cross correlated as defined by the equa- 
tions [1]: 

y<r) ^   "»   r..,1™, "   .   J    y(t)x(t.T)dt, 
(15) 

where 

("»»,) 
T-»« T J„ 

x(t)2dt 

This system is shown in the photograph in 
Fig. 6. As the force spectrum was peaked, only 
a select number of modes were excited; thus, 
the incoming response signals were amplified 
but not filtered any further. Should the occasion 
arise that the structural test member is excited 
by a flat broadband force, then the incoming 
signals could be filtered before they are cross 
correlated to see the results only for a select 
number of modes.  For this purpose, the system 
has standard one-third octave and continuously 
tunable constant bandwidth analog filters. 

A digital time delay unit in the system was 
utilized to delay signal x( t) before x( t) y( t) 
were multiplied together by a hybrid multiplier. 
This unit is automatically programable in de- 
lay increments in multiples of 5 /xsec out to a r 
maximum of 200,000 jisec.  The time delay 

sector determined by the initial and final delay 
settings are selectable by digital switches. An 
analog-to-digital converter digitized the incom- 
ing broadband signal. It is then time delayed 
the appropriate amount in magnetosirictive 
lines and finally converted back to an analog 
signal by a digital-to-analog converter. 

The averaging circuit located at the output 
of the multiplier employs operational amplifi- 
ers with various feedback networks that pro- 
duce selectable averaging times of 2.5, 5, 15, 
30, and 60 sec.  Each computed point on the 
time correlation curves is a result of 30 sec 
averaging. Generally speaking for random sig- 
nals, the longer the averaging time, the greater 
the repeatability of the points for repeated test 
data. Data repeatability for 30 sec averaging 
is within 5 percent of the reading. 

In parallel with the multipliers, there are 
two true rms meters that produce rms, and 
rmsy.   The product of these two quantities is 
necessary, as shown in the above equation, to 
produce the normalized, crosu-correlation 
function Kxy(T).   The normalized function has 
the advantage of being independent of the am- 
plitude of the broadband force so long as its 
spectral distribution is not altered.  The out- 
puts from the averaging networks are digitized 
and the resulting digital readings are entered 
into a conventional digital computer.  An exten- 
sive digital program corrects the data readings 
for instrumentation errors and computer sys- 
tem errors, and normalizes and scales the final 
results to the appropriate engineering units. 
The time correlation curves, shown in Fig. 7, 
are a direct product of this system. 

^ftt 

- 
M 

■ ■ ■f        ■ ■ ■     \ 

■.-'■■'                               .. ^       ■ '-- ■    ■.  ■■•• 

Fig. 6.   CrOBS-correlation ■ystem 
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Fig, ?.   Experimental cross-ccrrelation curves 

The resulting time cross correlation ob- 
tained for both the damaged and undamaged bar 
are shown superimposed in Fig. 7. The nor- 
malized function, which ranges from +1.0 to 
-1.0, is plotted along the vertical scale. The 
curves are faired lines through discrete points 
because signal x( t) was delayed in time delay 
increments of 40 fisec. The heavy curve for 
the undamaged beam is assumed to be approxi- 
mately zero in magnitude below 2000 Msec and 
above 6800 ^sec. The imaginary envelope for 
the ac waveform peaks around 3900 ixaec and 
then the curve is shown to be zero above 6600 
fisec. 

beam. Note that Eq. (16) with the additional 
terms can be compared with Eq. (13) which was 
derived for a broadband input. 

The only plausible explanation for the 
cross-correlation function peaking at some 
other T value besides zero seems to be a re- 
sult of the beating of the separate cross- 
correlation functions. Then it should be possi- 
ble to compute the Tp at which the maximum 
occurred from other known data. The envelope 
maximum for the subtraction of two cosine 
functions occurs at 

This waveform can best be understood by 
considering that the cross-correlation function 
for each mode, separately, would have the re- 
lationship below for sinusoidal excitation [1]. 

TP = 1 

or (17) 

"y0 rms     rms, 
sin 

~2L 
sin cos (<vO- 

2L 
(16) 

The constant, K, will have a mean-square value 
equal to the denominator, making the ratio 1.0. 
The two sine terms are bounded by values of 
11.0 and are dependent upon the locations for 
the two transducers {, and 12.   Thus, the 
function in Eq. (16) has a maximum at T equals 
zero, but may be either a positive or negative 
number.  The sum of three such terms for 
(n = 21, 22, and 23) will be shown to approxi- 
mate the curve in Fig. 7 for the undamaged 

>"   2(fnM-fn) 

Referring again to Table 1, the vibration modes 
beginning with n * 21 are an average 140 Hz 
apart in frequency. Substituting this value into 
Eq. (17), Tp is calculated to be 3600 Msec. This 
compares favorably with the 3900 M*ec obtained 
experimentally. The period for the axis cross- 
ings also agrees with the average period for 
the vibration modes (n « 21, 22, and 23). 

The heavy dashed curve shown in Fig. 7 is 
the time cross-correlation function obtained 
experimentally for the damaged beam. Referring 
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one« again to Table 1, it can be seen that the 
nodal frequencies (or the damaged beam 
chanfed slightly, while the amplitudes changed 
substantially. In fact, vibration modes with 
n - 21, 22, and 23 are replaced by vibration 
modes with n * 20, 21, 23, and 25. These re- 
sults were derived empirically by driving the 
damaged beam with sinusoidal excitation and 
recording each of the response signals read on 
a true rms meter. The differences in the vi- 
bration modes are difficult to predict because, 
at these frequencies, they are highly dependent 
on irregularities in the beam and because the 
true input force is difficult to describe. 

Bearing in mind the analytical discussion, 
a number of supporting observations can be 
made by looking at the dashed curve. The 
peaks of the ac waveform are much more ir- 
regular than for the solid curve, but an envelope 
drawn for the peak maximums would itself peak 
around 4000 ysec and would reach a minimum 
at approximately 6200 ^usec. Thereafter, the 
envelope would grow once more, much like the 
predicted theoretical curve. The axis cross- 
ings are a little more frequent, suggesting a 
slightly higher average frequency, «0.   This is 
borne out by the modal frequencies listed in 
Table 1. The irregular peaks indicate a faster 
beating or a wider separation of frequencies 
for the modal vibrations. Vibration mode n = 20 
plays a predominant role in this respect. Equa- 
tion (14) in the analytical discussion implied 
that the modal frequencies for a damaged beam 
would not be uniformly spaced in frequency. In 
contrast, for a homogeneous beam the modal 
frequencies increased with n1.   The irregular 
curve obtained experimentally is thought to be 
« direct product erf this analytical conclusion. 

A further strengthening of the essential 
points made in this paper can be gained by con- 
structing synthesized time cross-correlation 
curves from the sinusoidal, modal response 
data. Understandably, all the vibration modes 
up through n = 25 could not be taken into ac- 
count b«caii)u> the hand ralculations would reach 
a trying state. It further could be argued that 
the modes below n = 100, although small in re- 
sponse because of the input spectral shape, 
would only show up as a bias in K,y(') plotted 
only on a T scale out to 10,000 Msec.  For the 
remaining modes, either one or both of the re- 
sponse signals was small; consequently, only 
the modes between n s 20 and 25 will be con- 
sidered. 

The question of the effects on the time 
correlntion function of a two-point force input 
also neids to be considered. Without compli- 
cating matters too much, the equations for the 

deflections « and y at points -C, and l,, re- 
spectively, and two force inputs at -C, and -f 4 

can be expressed as 

«('t,.t)=  £ ^(-e.) [;n,fjt) ♦ fn.,4(t)] 

and (18) 

y<Vt)=  £ ^2) K, f (t) * £„,» (t)]. 

where 

rm-t, 

nw-t. 

-■'3(t)=   12(^)1 J" = "    H. 
»in cos u> t , 

n77-t2 

^n,f4(t) -  sin cos (^„t + ^V 2 »JI v   n       n' IZ(-„)l2 2L 

The quantities ^n,fj(t) and fn f4(t) are time- 
response functions for harmonic inputs with 
rms levels Fni and Fn2.   The familiar fre- 
quency dependent quantity is Z(wn), and a phase 
shift en is included between the two forces. 

The cross correlation of the equations in 
Eq. (18) can be written 

,(0)  =  4   J       £    ^,Kn,f  (t)^2)'fn.f (t)dt 
0       n'JO 

1       fT       " 

0       n-J0 

'  t   I        L   ^n(,l^n.f.(t)0„('t2) 'n.f.Cndt 
0       n"J0 

'   T   J        L   ^n({.)^,f4(»)^2Kn7   (t)dt. 

(19) 

Performing the indicated Integrations, the final 
expression for R,y(^|.^2.

T) can be expressed 
as 
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WP^ 

-(^-"*>Jr■■^«P*-'*,**, .^^i,^,»!«-««?«»«!^^ 

nw-t, nw-t. 

"„(V) 
»in-^ «in-jj; 

2"lzn(^)l; 

rrr-t. 
+  (cosen)coS<v |F„ Fn2»in ^^ 

nTf'l4 

(20) 

Equation (20) In its present form assumes 
small damping (7 « l), or in other words, no 
damping coupling between modes. This being 
the case, Eq. (20) indicates that the response 
contributions from each of the modes can be 
linear!" summed.  Further, it can be deduced 
that RI„(4I,it,.T) is an even function and that 
Bn, the phase shift between the force inputs, 
does not cause this function to peak at some 
value other than T = 0. 

will show that the axis crossing« differ some- 
what, becoming more pronounced for the larger 
values of T.  The sensitivity of the time corre- 
lation function at large T'S to slight discrepan- 
cies in modal frequencies is planned to be uned 
as an advantage in this process. 

The synthesized curve for the damaged bar 
compares favorably in wave shape to that pre- 
dicted analytically. The envelope for the peak 
maximums approximates a half sine wave with 
a maximum at 3600 jisec and a minimum at ap- 
proximately 5200 fxsec. Thereafter, the enve- 
lope begins to grow in amplitude again (beating 
phenomenon). 

Admittedly, the comparisons between the 
analytical, experimental, and synthesized 
curves are more qualitative than quantitative in 
nature. Yet, the evidence that the peaks in the 
cross-correlation functions are a result of the 
bunching of vibration modes is considered 
fairly certain. 

Using the quantities for the rms accelera- 
tions found in Table 1, the two synthesized time 
cross-correlation curves shown in Fig. 3 were 
produced. The ac waveform for the undamaged 
beam increases in amplitude very similar to 
the experimental curve in Fig. 7.  For the pres- 
ent example, the envelope maximum occurs at 
approximately 3800 fxsec and then begins to 
diminish in size. Overlapping of the two curves 

CONCLUSIONS 

This paper proposes that cracks introduced 
into a structural beam cause slight changes in 
the frequencies and amplitudes of the modal vi- 
brations. These small changes nevertheless 
produce significant changes in the time cross- 
correlation functions because of the beating of 

/.On 

; !:::::•■: 

/QOOO 

Fig. 8.    Synthesized cross-correlation curves 
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tht iMÜTknal cross-correlation functions. At 
this ttm», the locaUon of the crack along the 
beam would probably have to be deteruiined 
enpirlcally as, even for the simple beam, the 
asalytiesl ealsulsticna ^culd be sstensive. 
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DISCUSSION 

R. Reed (MOL); Did you try any other ap- 
proaches to the problem? Did you look into 
power spectral density or something like that? 
Also, I do not think you mentioned nonlineari- 
tles. You actually had a notch in your beam, as 
opposed to a crack, which is, I think, a nonlin- 
earlty. Did the cross spectral density indicate 
anything? 

Mr. Baganoff:  Let me answer your first 
question. Why would one go to croes-correlation 
analysis rather than power spectral density 
analysis? I firmly believe that PSD data, which 
is devoid of phase information, has its limita- 
tions. In other words, we are only looking at 
amplitude fluctuations as a function of frequency 
and I think that there is a lot of Information 
wrapped up in phase. Instrumentation wise, it 
is probably ten times more difficult to preserve 
phase than It is amplitude just because there is 
so much information wrapped up in it. Regard- 
ing your second question, the nonllnearity was 
considered but «e ran this experiment and got 
good correlation between the analytical and ex- 
perimental approach. We want to look into 
these other aspects, but this is as far as we 
have progressed. 

E. Sevln (irr Research Institute):  As I un- 
derstand it, you are cross correlating the ac- 
celeration responses at two arbitrarily located 
points on the same beam. Could you comment 
just briefly on the physical principle being ex- 
ploited here ? I don't really appreciate what the 
lag really amounts to. What you are basically 
attempting to do is to run a confidence test on 
the stationär!ty of the process at any one point. 
Why wouldn't an autocorrelation at a given point 
really give you as much information ? 

Mr. Baganoff: Consider two of the modal 
vibrations. Suppose we have 2000 Hz and 2140 
Hz. The point is that you are cross correlating 
both of these responses at the same time and 
they are 140 Hz apart. When you cross corre- 
late them you get a certain shaped curve, as a 
function of tau. The lag, tau, allows the beating 
to take place between the cosine at 2000 Hz and 
a cosine at 2140 Hz.  Then, when you introduce 
the latigue or crack in the beam, the modal vi- 
bration at 2000 Hz no longer remains at 2000 
Hz. It may change slightly, so that the separa- 
tion is no longer 140 Hz. With the tau lag you 
can bring this out. You would not be able to get 
this from autocorrelation. 
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A THEORETICAL MODAL STUDY FOR THE LATERAL 

VIBRATIONS OF BARS HAVING VARIABLE 

CROSS SECTION AND FREE END CONDITIONS* 

Arthur F. Witte 
Sandia Corporation 

Albuquerque,   New Mexico 

A considerable amount of interest has been generated in determining the normal bending 
modes of beams having a variable cross section and free end conditions.   The practical 
applications of the problem became of interest in the early 1900's when applied to the 
free vibrations of a ship's hull.   The problem has now become important when applied to 
the fi   Id of missiles and launch vehicles. 

This paper contains a theoretical method that can be used to predict the normal bending 
modes of beams having variable cross section and free end conditions. The method out- 
lined here works directly with the differential equation of motion 

dxJ L 
EI(X) ^ 

m(x)  -I -   0, 
3t2 

where El and m vary with x and where the bending moment and shear force are zero at 
each end.   The effects of rotary inertia, shear, and material damping are not considered. 

The method of solving the problem is basically one of transforming the partial differen- 
tial equation and the boundary conditions into a system of linear algebraic equations with 
the use of finite difference approximations.   The algebraic equations are written in ma- 
trix form and the problem becomes one of determining the eigenvalues and the eigen- 
vectors of the matrix.   However, the matrix must be inverted.   Because of the free end 
conditions, the matrix is multiply degenerate and cannot be inverted until two degrees of 
freedom corresponding to rigid body translation and rigid body rotation are eliminated 
from the system of equations.    Because of these *wo degrees of freedom, normal influ- 
ence coefficient methods cannot be used when frei' end conditions are present. 

This paper details the methods used, contains an operational FORTRAN II computer pro- 
gram for obtaining the first two normal bending modes, and compares the predicted re- 
sults with experimental results obtained from a mod.il study on a small, high altitude 
research missile. 

INTRODUCTION 

Because the effects of rotary inertia, 
shear, and material clamping have not been 
considered, the method of solution presented in 
this paper is not extremely complicated.  Good 
engineering estimates of resonant frequencies 
and corresponding mode shapes of missile sys- 
tems can be obtained where the wavelength of 
vibration is large compared with the lateral 

dimensions of the system. Good estimates can 
generally be obtained for the first two normal 
bending modes. 

The mathematics and computer program 
are such that with a little background in numer- 
ical methods of linear algebra and computer 
programing one can understand, without much 
difficulty, what is presented. 

*Thi8 work was supported by the U.S. Atomic Energy Commission. 
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Tb* method of solution can be summarised 
«a follows: 

1. Divide tbe bar into stations in such a 
manner as to accommodate the boundary condi- 
tions. 

2. Use finite difference approximations to 
convert the partial differential equation 

B 

B« 

C 

S 

E 

Matrix B 

I inverse 

Matrix C 

Matrix D 

Modulus of elasticity 

£HS'-<"3 = » I 

Rigidity at stations i 

Area moment of inertia 

and the boundary conddtt^a 
I Identity matrix 

3Jy EI(«) J         - 0 L Length of the bar 
^     0,L 

"i Bending moment at station i 

3 r       ^»yi = 0 
0,L 

P 

P-' 

Matrix P 

P inverse 

to a set of ordinary differential equations. 
Q Matrix Q 

3. Obtain a set of linearly dependent alge- 
braic equations by assuming a solution of form V Shear 

yi = Yj  sin (pt+*) . 
V Vector V 

4. Write two equations which describe lin- 
ear relations between the displacement of points 
on the bar corresponding to rigid body rotation 
and translation. 

Y 

Y 

Z 

Vector Y 

A component of Y 

Vector Z 

5. Obtain a set of linearly independent al- 
gebraic equations and write in matrix form. Z A component of Z 

6. Invert the matrix. a.i An element of Ä 

7. Determine the eigenvalues and corre- 
sponding eigenvectors which are the natural 
frequencies and corresponding mode shapes. 

bii An element of 1 

An element of B"' 

The method of solutior described in this cij An element of c 

paper can be used for nonuniform bars with 
other end conditions; however, free-free end 
conditions create some difficulty not encoun- 
tered when using other boundary conditions. 

Results of an experimental modal study on 
a single stage Tomahawk high altitude research 
vehicle are compared with predicted results 
obtained using a FORTRAN II computer pro- 
gram which is listed in the Appendix. 

NOMENCLATURE 

I      Matrix A 

A '      Ä inverse 

The jth natural frequency in cycles per 
second (Hertz) 

An integer variable 

An integer variable 

Mass per unit length of the bar at 
station i 

Number of stations or number of 
sections 

The j th natural circular frequency in 
radians per second 
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.r**,'-'. rpsgaWMiBiayBlSWWg^^ 

q Load intensity 

t Time 

x Distance along the bar from its left end 

Ax Distance between stations 

y Lateral displacement of the bar 

ß Dominant eigenvalue of B"' 

r Second eigenvalue of B ' 

i Third eigenvalue of 1 ' 

4> A phase angle 

p Density 

4 Damping factor c/cc r 

THE DIFFERENTIAL EQUATION 
OF MOTION AND BOUNDARY 
CONDITIONS 

The following relationships hold for a bar, 
with a continuously varying rigidity, El, sub- 
jected to a load of intensity, q, which may also 
vary continuously along the length of the bar: 

y = deflection of the elastic curve 

dy 
T- - slope of the elastic curve dx 

d2y 
El —- =  -M (bending moment) 

dx2 

(1) 

d 
d7 

dx-1 

El 
£y 
dxJJ 

El 
dx2j 

.y (shear) 

q (load  intensity). 

These relationships hold provided that the bar 
has a plane of symmetry and that bending oc- 
curs in that plane. 

The principle of d'Alembert can be applied 
to a vibrating bar, and the load intensity, q, 
which varies along the length of the bar will be 
the reversed effective force given by 

The quantity m is the mass per unit length of 
the bar, which may vary continuously along the 
length of the bar. The expression for the re- 
versed effective force is substituted into Eq. (1) 
and the equation for the lateral vibrations of a 
nonuniform bar becomes 

ax2 L        ax2J 
ni(x) 

3t2 0. (3) 

As y is now a function of both x and t, the 
equations in Eq. (1) become partial differential 
equations. 

If the wavelength of the vibration is large 
compared with the lateral dimensions of tine 
bar, the effects of rotary inertia and shear are 
considered negligible. Thus, for the lower 
modes of vibration of a bar whose lateral di- 
mensions are small compared with its length, 
the effects of rotary inertia and shear may be 
neglected, and Eq. (3) adequately describes the 
motion of the bar if material damping is also 
neglected. 

As a free-free bar is neither supported 
nor restrained at either end, the boundary con- 
ditions for each end are as follows: 

1. The bending moment EI^V^X
2
) is 

zero. 

2. The shear force (3/ax) [Ei(32y dx2)] is 
zero. 

DETERMINATION OF THE FIRST 
NORMAL MODE 

Consider the nonuniform bar of length L 
shown in Fig, 1. The bar is divided into n sec- 
tions Ax in length where 

Ax.l. 
n (4) 

The particular method of dividing the bar into 
sections is used to accommodate the boundary 
conditions. 

As the deflection of a vibrating bar is a 
function of both x and t, the expression for the 
bending moment from Eq. (1) can be written as 

El djy 
?xJ 

(5) 

q =  -m <v 
o) This expression is put into Eq. (3) and the fol- 

lowing equation of motion is obtained: 
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The second order difference approxima- 
tions for (a'cM)) (^x2) and {^'y'^x2) are sub- 
stituted into Eqs. (5) and (6), resulting in the 
following ordinary differential equation for 
each station: 

 — ■ — +  mr   '-      0   (r=l,2,3 n), 
(Ax)2 r   dt2 V ' 

(9) 

where 

Fig. 1.    Bar having a variable ^ ross 
section and free  end conditions 

(yr.i-2yr + yr<1) 
M, =  -El,  —^-!  . (r^l,2,3 n) 

(Ax)2 

(10) 

 r— + m —r =  0 . 
3x2 dt2 

(6) 

If one assumes that the dependent variables 
y and M of Eqs. (5) and (6) can be adequately 
represented by second order polynomials in x, * 
the following finite difference approximations 
for the first and second derivatives can be used: 

ml 2Ax 

dx 

u.». -  u. 

Ax 

and 

2u, ♦ u. 

(Ax)! 

(7) 

The boundary conditions for the bar shown 
in Fig. 1 are 

•WO.      vI2= — 
ii/1 

and 

"n* 1/ J  '   " •       ^n+1/?  =   -    < 3x 

The boundary conditions can be written in 
finite difference form as 

M0 ♦ M. 

12      3x|I/3 Ax 

The quantity u is considered the dependent 
variable. 

The approximation 

and 

u ««n*   »n.l 

(8) 

will also be used when dealing with the bound- 
ary conditions. These approximations become 
more accurate as the number of sections into 
which the bar is divided is increased. 

V r     

Therefore 

Äx 

M0       M,       MI1      lln, |  =   0. (ID 

*This condition r. , be considered fulfilled 
provided the dependent variables may be ade- 
quately represented by a second order polyno- 
mial between at least three consecutive stations. 

Equations (9), (10), and (11) are now used to 
form a set of ordinary differential equations 
that represent the original partial differential 
equation. These equations are of the form 
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■(M0 - 2M, + Mj) d'y, 

(Ax)' dt: 

equations in Eq. (12) and the solution, 

Yi  »in (pt +0) , 

-(M, - 2M2 t Mj) d2y, 
  +  m,  — 

(Ax)2 2   dt2 

.(»l2 -  2M3 + M4) d2y3 
   +  m,   -   0 

(Ax)2 J   dt2 

-(Mi., -  2Mi  + Mltl) d2yi 

(Ax)3 + m'^0 

put into the resulting equations. A set of n lin- 
ear algebraic equations can be obtained if one 
divides through each resulting equation by 
sin (pt +</>>.   The n linear algebraic equations 
are 

EI j 2EI j El j 
Y. -  —4 Y, t TY3=  »iP'V, 

(12) (Ax)4  ''       (Ax)4  '2      (Ax) 

-2EIj           (4EIjtEI,)            2(EIj + EI,) 
-—: Y, +  :——- Y, .       Y, 
(Ax) 4  M (Ax)4 2 (Ax) 4 "3 

(»•„.,- Mn.I + Mn)               d'y^,      n 
i  m_.,  r_ =   0 

(Ax)2 dt3 

-(M„   , " Mn + Mntl) d2y„ 
  +  ni„   =   0 

(Ax)2 "   dt2 

where 

M0 = 0 

M, - 0 

(y. - 2y2 * y, 
M, - -EI, - 

2 2 (Ax)2 

»«!   =   -EI3 
(yjj -   2y3 f  y,) 

(Ax)2 

(13) 
(y;.i -  2yi  *  yi,,) 

(Ax)2 

(yn.3 - ^yn-i t yn) 

(Ax)2 

When a bar vibrates with one of its natural 
modes, the deflection of any point on the elastic 
curve varies harmonically with time, and a so- 
lution of the form 

ill 
(Ax) 

7Y4   =   m2p
2Y3 

(Ax)4 Yi-2 " (Ax)4 Yi-, 

(EIi.1i4EIi+EIitl) 2(EIi+EIitI) 

(15) 

(Ax)4 
Y;- 

(Ax) 
— Y. 4 ' i*l 

(Ax) 
;Vitl=  mip

2Yi 

"n-^ „ 2EIn.. EIr 

(Ax)4    n-2      '(Ax) -Y"-+7^7Y" = m"p2Y"- 

It should be noted that the general expres- 
sion 

"i-, 2(EIj.I + EIi) 

(Ax)4     ' 4   'i-J (Ax) -, 
Yi-. 

(EIj^MEI^EIj,,) Y   _  2(EIi4EIit,) ^ 

(Ax)4 ' (Ax)4 '*' 

EI. 
f7ft7Y"2= 'n'p,Yi (Ax)4 

will nold for all stations provided the quantities 
El0, EI,, Eln, and El,,,, are made zero. 

yi   =  Yj   sin  (pt ♦<*) (14) 

may be assumed for Eqs. (12) and (13).  The 
quantity, P, is defined as the natural circular 
frequency of the vibrating bar.  The equations 
in Eq. (13) may now be substituted into the 

The equations in Eq. (15) involve n equa- 
tions and n * 1 unknowns.  The algebraic equa- 
tion for each station can be divided through by 
the mass per unit length, m, at that station and 
a set of equations of the following form will be 
obtained: 
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IT 

^jBW»«B^y (•* 'I-«»». 

•l 1YI  + «I 2Y1  +   "I JYJ  -'   P^I 

•»   1*1  +   «2 »Y2 + «2 ,*> +   «2 4V4   =   P?Y, 

•»   1YI + «1   2Y2   +   «J »YJ  + "J 4*4   +   »3 5V5   =   P'V, 

"«   .Y2 + «4   3YJ   +   «4 4*4   + »4 SYS   +   "4 .Y.   =   P2Y4 

"n  n-2^n-2 +   "n  n-lYn-l  +   »n  nYn =   P^n" 

The equations in Eq. (15) can be written in 
matrix form as 

'•1 1 "i 2 »i 3 0      0      0      o....o> 

"2   J   "2   2   -2 ,   Ej   4  0 0 0 0 

I   "3    2   «3   3   «3   4   »3   5   0 0 0 

0 «4   2   "4   3   »4   4   "4   5   ■4   .  0 0 

Oa n  n-2 "n  n-l     n  n 

(16) 

or 

ÄY  = p'Y. (17) 

The problem becomes one of finding the eigen- 
values p1 and the corresponding eigenvectors 
Y of the matrix A. 

An iterative method of determining the 
largest eigenvalue of i can be used provided 
the eigenvalue is real and unrepeated [1]. 
However, as the lowest natural frequency is of 
primary concern, Eq. (17) can be premuttiplied 
bfV1.  Thus, *->*¥ = pU-'Y.   But,X-,S=1 
where I is an identity matrix, 

l    0    0   ...   0^ 

0    1    0   ...   0 

The equation may now be written as A'' V = ßy 
where ß = l/p1.   The problem is then one of 
determining the largest eigenvalue ß of A''. 
However, the inverse of the square matrix X 
can only be computed provided the matrix Ä is 
nonsingular, i.e., provided the determinant of A 
is not zero [2]. 

A free-free bar is capable of pure rotation, 
translation, or a combination of the two with a 
zero natural frequency, and P2 - 0. 

Equation (17) can be rewritten as 

(Ä- p2I)Y  = 0. 

For nontrivial solutions of Y, 

l(Ä-p2I)|  = Ö, 

if p2- 0, then |A| = 0; the matrix Ä is singular 
and cannot be inverted.  The singularity of A 
may be verified by the tedious expansion of the 
determinant of Ä.   The rows of Ä are linearly 
connected by two relationships making Ä mul- 
tiply degenerate. 

Two more equations can be written that 
describe the linear relations between the dis- 
placements of points on the bar. 

Consider the vibrating bar, shown in Fig. 1, 
divided into n segments Ax in length. As an 
approximation, the centers of mass of the ele- 
ments will be considered to be at stations 
r = l, 2, 3 n.   Again d'Alembert's principle 
can be applied to the vibrating bar; and the 
intertial force m^^d^^dt2) can be considered 
to be acting on each element through its center 
of mass. This approximation becomes more 
accurate as the number of segments into which 
the bar is divided is increased. As the bar is 
not supported or constrained in any manner in 
the plane of vibration, only the following iner- 
tial forces act on the bar: 

dVj 
Y"   KljAx — 
£l dt 

The fcllcwing equations can be written 

2>y=0 

and 

2_*T-l/l = 0. 

10   0   0 1 These equations can be written as 
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, ^r «*■ ■   rffe^f^fr-■••'■''t-,**'1' ̂ -«■■»j»cc*«t'^jif!*5*j(>*|^5R?^>j| 

and 

Lr,-L^~i-* 

where 

dt3 

dV, 

(2i-l) . 
x,  =  Ax . 

Independent by substituting Eqs. (20) and (21) 
(18) for two of the original equations, let us say the 

first two. Terms involving Y, and Y, may be 
eliminated from the new set of linearly inde- 
pendent algebraic equations and a new vector 
equation of the form 

E"r../a=  E-i^-^x^O.     (19) ,, 

b2  , 

b.  , 

b, 2 

b. „., ^ 

b, „., 

b„.2 i bn-J 1 ■ •  bn.j n,j. 

It should be noted here that the effects of 
rotary inertia of the elements have again been 
neglected in writing Eq. (19). The assumed so- 
lution yj = Y: sin (pt + 4>) can be substituted 
into Eqs. (18) and (19) and the following equa- 
tions result: 

-p2 sin (pt+0) &x  £ nijYi = 0 

and 

p1 sin (pt + <f>) ^L   ^  (2i - 1) mjYj  =  0 

can be written. This vector equation can be 
written as 

BY' = p2Y'. (22) 

Note that the matrix B is now the new matrix of 
order (n - 2) by (n - 2) and Y' is a vector the 
components of which are Y,, Y4 Yn, 

The inverse of the square matrix § can 
now be computed, and Eq. (22) premultiplied by 
B-'.   The resulting equation is B"' BY' = p2B- 'Y' 
which yields 

B'Y' ßX" (23) 

For the nontrivial solution of p, the above 
equations can be written as 

E «iVj = 0 

where ß = l/p2.   The matrix B' • will be de- 
noted by 

'b'. 

K 

b'i b', „. 

bj a      •■■ bj n.j 

and 

Thus 

and 

£  (2i-l)miYi =  0 

"lYl  +   m3YJ +   mlYJ +    ■••   +   >"nYn  =   0      (20) 

«1Ylt3Bi2Y,+ 5mJY,+ ... + (2n-l) n^Y,,   =   0.   (21) 

'bn-j  i    bn.j j  ...  bn.j n.j 

The dominant eigenvalue of the matrix B'' can 
be computed by choosing some initial arbitrary 
vector YJ, let us say 

Equation (20) may also be obtained by add- 
ing the n expressions of Eq. (15). 

By means of Eqs. (20) and (21) one can 
eliminate two degrees of freedom in such a 
manner that p2 - o is no longer a root of the 
frequency equation. The linearly dependent 
equations in Eq. (15) may be made linearly 

This vector is premultiplied by B*' and a 
scalar quantity ß is extracted fron, the new 
vector \'t in such a way as to reduce the last 
component of YJ to unity. In this manner the 
following sequence can be computed: 
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r*rr—r-r 
'"•:% \ 

If ?j approacb«« a limit Y' the sequence wiU 
approach a limit and 

I"1?' = ß^'. 

The scalar /S, «ill also approach a limit ß 
which in general is the dominant eigenvalue of 
the matrix i't and 7' Is the corresponding 
eifsnTector [S]. The first natural frequency 
can be obtained by using p, = v'W rps or 
f, » p,/Jif Hi. The corresponding mode shape 
is given by 

*. 

i?; 

The values of Y, , and Y, , can be obtained 
with the use of Eqs. (20) and (21). The quantity 
Yj , can be eliminated between the two equa- 
tions and an equation for Yj , c&n be written as 

DETERMINATION OF THE SECOND 
NORMAL MODE AND THE 
MODES NEXT IN LINE 

As the iterative process previously de- 
scribed can only be used to obtain the dominant 
eigenvalue and corresponding eigenvector of 
the matrix 1'', a new method of calculating 
the eigenvalue and corresponding eigenvector 
next in line must be used. 

A similarity transformation will be used to 
construct A matrix which is similar to the ma- 
trix B''.   From this similar matrix the second 
eigenvector can be obtained as veil as the cor- 
responding eigenvalue [4]. 

A similarity transformation can be used to 
obtain »reduced matrix C from the original 
matrix B'', both of which have identical eigen- 
values. 

The eigenvector Y; corresponding to the 
first eigenvalue ß can be used to construct a 
square matrix of the form 

% ,   o   o 

Y, 4   i   o 

Y, ,    0    1    0 

Y, „    0    0 ...   0    1; 

and its inverse 

li * Z>-i)r,Yii (24) 

After the value of Y. , has been calculated, 
Y. , can be obtainea using 

'n = - £ ii Yi» 
1 — «        ■ 

(25) 

*Note that hereafter the mode thape correepond- 
ing to the jth natural frequency will be denoted 
ai 

•i i 

"i » 

'•'I 

Let 

0    0 

1    0 

0    1    0 ...   0 

0    0 

Q = P-' B-' P . 

0    1 

The matrix 0 Is similar to B"' and has Identi- 
cal eigenvalues [5]. The following expression 
is obtained by jierformlng the matrix multipli- 
cation P-'B 'P: 
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P-' B-' P 

b; 1   2 

I   3 

o  b^-Ji-ib;, 

bl n-l 

Da n-l     Y Dl n-» 

Yl n    ,                 ,                  YI n    , 
^0   K-t I' Y^~ bl  2 • ■    ^-J n-2 " 7 bl n-l/ 

This expression may be written as 

bl   i bI  n-J 

Q   = 

Consider the equation 

QZ = yZ (26) 

where > is the eigenvalue of Q and z the cor- 
responding eigenvector. The equation may be 
rewritten as (Q-yT)Z = o. 

For nontrivial solutions of Z, 

l(Q -rT)| = o 

where 

1(0-71)1  = (ß-Y) l(C-yT)|  = 0, 

Thus if/^y, then 1(0-71)1 - 0.   One can now 
write the following expression: 

CZ' = yZ' (27) 

where z' is a vector the components of which 
are Za. Z...... Zn.,. 

h*.. b'i i " 7J~J bi i bi n-a " 777 b'« »-» 

Yi „ 
*Dn-a   3       Y. 1   '' '      n-J  n-2 ' Y^T U|   "• U D, 

(28) 
The iterative procedure for determining 

the dominant eigenvalue and the corresponding 

eigenvector previously described can be per* 
formed on the matrix C to yield the dwlMat 

• eigenvalue y and the corresponding eigen- 
vector 2'. 

The value of z, must now be computed. 
Equation (26) can be rewritten as 

/3Z, + 

b; b: •>; 

ei- 

(2«) 

From this equation, one can write 

/SZ, +• 
b; bi , 
? Z2* y^ Z, + 

+ bj „., 
= TZ. 

Therefore 

b'l   J2! +   b'l   JZJ  + 

(y-^V,, 
+  bl  n.aZn-»   (JO) 

and 

The eigenvalue y and the corresponding 
eigenvector I of the matrix Q have been o*>- 
tained. Determination of the eigenvector of the 
similar matrix i'' is now required. 

Consider the equation 

B'^yv; (SI) 

and Eq. (26), which can be written as 

P«B-«PZ=/Z. (32) 

Premultiplying Eq. (32) by P, one obtains 

pp ' B ' fl~ yfl 
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1 

which i« 

Therefore 

or 

(88) 

(84) 

Y 

..2. \ 

. « 2, + Z, 

Y, , Z, + Z, 

\v, „ z, + Zn.2/ 

(35) 

The second natural frequency can be obtained 
by using p, = vTTr rps or f, = p,/2rr Hz. 

The values of Y, . and Y, , may be ob- 
tained by using Eqs. (24) and (25), respectively. 
The mode shape then becomes 

Y,  , 

'2   2 

\' j 
The procedure previously described can 

again be used to obtain a third reduced matrix 
from which the third natural frequency and 
corresponding mode shape can be obtained. 
Again, a fourth reduced matrix can be obtained. 
The error in calculated frequencies and mode 
shapes becomes greater the further the original 
matrix is reduced. The amount of error can be 
reduced by originally using a greater number 
of stations. 

THE COMPUTER PROGRAM 

The program, listed in the Appendix, is 
written in FORTRAN II for the CDC-3600 Digi- 
tal Computer for calculating the first and sec- 
ond natural frequencies and the corresponding 
mode shapes of uniform and nonuniform bars 
with free end conditions. The program utilises 
the methods described previously and is capa- 
ble of handling a bar divided into as many as 
one hundred stations. 

The input data required by the program are 
as follows: 

1. The number of stations n into which the 
bar is divided. 

2. The length of the bar L in inches. 

8. The rigidity of the bar El at each sta- 
tion, in lb, in? 

4. The mass per unit length of the bar m at 
each station, in lbf sec3 per in.3 

As shown in Fig. 1, the first station, r = i, 
must be (Ax)/2 from the end of the bar, the 
second station r = 2, at 3/2 Ax, etc. Thus the 
nth station,      n, must be located at [(2n-i)/2jAx 
from the end of the bar. 

The output of the program is; 

1. The data, L, n, and El at each station, 
and m at each station. 

2. The first and second natural circular 
frequencies, p, and P^ , in radians per second. 

3. The first and second natural frequencies, 
f, and f,, in Hertz. 

4. The mode shapes corresponding to the 
first and second natural frequencies. 

5. The number of iterations required for 
the recursion process previously described to 
converge to the dominant eigenvalues, ß and y. 

The program is written so that the com- 
puter using the given data can form an (n - 2) 
by (n - 2) array which is matrix S.   This array 
is formed with the use of Eqs. (15), (20), and 
(21). 

The matrix B is inverted by using a coop- 
erative subroutine subprogram that is listed 
after the main program. 

The dominant eigenvalue ß of B1 and the 
corresponding eigenvector Y | are determined 
by the iterative process previously described. 
An initial vector is assumed that has the nu- 
merical value of all its components, except the 
last, equal to zero. The last component of the 
assumed initial vector is unity. 

During the iterative procedure, the scalar 
quantity ß is extracted from the vector Y; in 
such a manner as to reduce the last component 
of Y; to unity. It should be noted here that the 
mode shape Y, always ha« the last component 
equal to unity. The test for convergence of the 
iterative process is made on the eigenvalue ß. 
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The numerical values of Y, j and are 
then computed with the use of Sqs. (24) and (25), 
respectively. 

The reduced (n - 3) by (n - 3) matrix c is 
formed with the use of the following expression 
developed from Eq. (28): 

C; bi«ii+i 

1 l i + 3 
blj« (36) 

where 

i =   1, 2, 3 n-3 

j =  1, 2, 3 n-3. 

Again the iterative procedure previously 
described is used to determine the dominant 
eigenvalue y of the matrix C, the value of P2, 
and the corresponding eigenvector Z'.   The 
numerical value of z, is then calculated with 
the use of Eq. (30).  A linear transformation, 
Eq. (35), is then made on z to determine Y,. 
Values of Yj j and Y, , are again calculated 
with the use of Eqs. (24) and (25), respectively. 
The mode shape Y2, corresponding to the sec- 
ond natural frequency, is formed in such a 
manner that the last component is unity. 

It should be noted that comment cards hcve 
been liberally distributed throughout the pro- 
gram for definition of nomenclature and to 
facilitate understanding of the procedures used. 

The input data deck takes the following 
form: 

1. The first card of the deck has the num- 
ber of stations punched in the first three col- 
umns. The number of stations is an integer 
number and the input format is 13. 

2. The srcond card has the bar length 
punched in the first nine columns. The input 
format is F9.4. 

3. The next group of cards contains El 
data. Data for up to five stations can be punched 
in the first 60 columns of a card. The input 
format is E12.5. Data for up to 100 stations 
can be read into the computer.  Note that values 
of El for the first and last stations must be 
read as zero, 0.OOOO0E 00. 

4. The last group of cards in the data deck 
contains mass distribution data. Again, data 
for up to five stations can be punched in the 
first 60 columns of a card.  The input format is 
E12.5. Data for up to 100 stations can be read 
into the computer. 

MODAL STUDY OF SINGLE-STAGE 
TOMAHAWK HIGH ALTITUDE 
RESEARCH VEHICLE 

The previously outlined procedure and 
computer program were used to predict the 
first two blending modes of a single-stage 
Tomahawk High Altitude Research Vehicle. 
The Ei and mass distribution curves for this 
vehicle are shown in Figs. 2 and 3, respectively. 

An experimental modal study was also per- 
formed on the vehicle. The test vehicle was 
supported in a free-free configuration using a 
low frequency suspension system of 3/4-in. 
shock cord. The effect of the supports and 
their location on the free end conditions of the 
test vehicle was of some concern at the start of 
the study. It was later determined, by changing 
the locations of the supports several times, 
that the support locations had no perceptible 
effects on the test results. Ten accelerometers 
were placed along the length and on the outside 
surface of the test vehicle to define the mode 
shapes. A small exciter weighing less than 
2 lb, with a force output of approximately 1 lb, 
was rigidly attached to one end of the test vehi- 
cle. The exciter served as a zero impedance 
source that did not effect the dynamic charac- 
teristics of the test vehicle.  Bending modes 
were easily identified because the small shaker 
supplied only enough energy to excite the nor- 
mal bending modes. Inherent mechanical filter- 
ing of the system yielded clean acceleration 
signals 90 degrees out of phase with the input 
force.  The resulting predicted and experimen- 
tally determined first and second bending modes 
for the test vehicle are shown in Figs. 4 and 5. 
Damping factors, l = (CCcr), were determined 
for the first and second modes, using the 
method of logarithmic decrement [6]. Values 
of l for the first and second modes were de- 
termined to be 9.6x10-4 and 19.1xMr4, re- 
spectively.  The errors in the predicted fre- 
quencies for the first and second modes, as 
compared with the experimentally obtained 
values, were 8.9 percent and 12.9 percent for 
the first and second modes, respectively. 

CONCLUSIONS 

Errors in th> predicted modes depend on 
the following parameters: 

1. The shape of the El curve. 

2. The shape of the mass distribution 
curve. 

3. The number of stations into which the 
bar is divided. 
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Fig. 3.    Weight distribution for 
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Fig. 5.   Second bending mode for 
high altitude research vehicle 

4. The mode in question. 

5. The effect of material damping. 

The number of stations or sections which 
should be used is dependent on the El curve, 
the mass distribution curve, and the mode in 
question.   El and mass distribution curves 
with severe fluctuations require a large number 
of stations to reduce the calculated error. 
Higher modes require a larger number of sta- 
tions than lower modes. This can be verified 

by calculating the bending modes of a uniform 
bar using several values of n. 

The theoretical methods and computer pro- 
gram outlined in this paper can provide good 
engineering estimates of at least the first two 
bending modes for small, relatively "uncompli- 
cated" missile systems or free-flight bodies 
where the lateral dimensions are small com- 
pared with the length (a ratio of 1:10 can be 
used as a "rule of thumb"). 
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Appendix 

PROGRAM LISTING 

»R^GffAH 0ARVI9F 

e S RÖA" 
c tun 
c er A 

- c 
 e - 

«Mi.j) 
c PET* 
c OL 
c B«{M 
c 
c C<I,J) 
C" fUti 
c r<n 
c F<») 
c RAMMA 
c H 
c IT(?fl  1 

c K 

c p<n 
c p<?) 
c *(!) 
c ru..O 
c 7<t.J) 

I «ÖAH^FÖR Dl-tC"RH|N!M(5 tWE PlR*f A»D SlCOND NATURAL rREÖUENCIES 
»un THE CORRESPn^OING MODE SHAPES TOR THE LATERAL VIBRATIONS 

NON UMFO^H FREEoFREE BAR 

DEFINITION OF NOMENCLATüRF 

MATRIX 9 
nOMlNANT EIGENVALUE OF »ATRTX B INVERSE 
LENGTH OF BAR (IN.) 
MASS PER UNIT LENGTH OF THE BAR AT STATION I 
(LBF SECXSEC/IN.XIN.) 
MATRIX C 
RIGIDITY OF THE BAR AT STATION I (LBF IN.x|N.) 
FIRST NATURAL FugoUENCV (CYC/SEC) 
SECOND NATURAL FREQUENCY (CYC/SEO 
nOMlNANT EIGENVALUE OF "ATRIX C 
DELTA X, DISTANCE BETWEEN STATIONS (IN.) 
NUMRgR OF ITERATIONS RfUIRCD TO CONVERGE TO THE 
DOMINANT 'EIGENVALUES 
NUMBER Of   STATIONS 
FIRST NATURAL CIRCULAR FRFOUENCY (RAD/SEC) 
SEC^Nn NATURAL CIRCULAR FREOUFNCY  (RAD/SP>C) 
DISTANCE FROM LEFT END OF BAR TO STATION | (IN,) 
EIGENVECTOR OF MATRIX B, OR MOOE SHAPE 
EIGEMVECTOR or MATRIX C 

REMARKS 

M MUST NOT EXCEEO 100 

C Etd) «"(D EKN) ARE REAP INTO THE PROGRAM AS ZERO 
C «TATPMCM? ?» AVI) PRECEEDING '«TATPMENT ARF FO» «3 DAT» ONLY 

C START OF PROGRAM 

OIwEwSIOK FKid), ,'M(100>» "dOO» 1P0>» V(2. 100)» A(ioO>t !''ON(l 
ini), ICOLdom. •»(?), XdOO), 2(2, 9P). r(07. 97), F(2», IT3(100.?) 

9«9  REAP INPUT TAPE S, 5. »■ 
*   FOR^ATdS) 

C CLFAR APPAVS 

Elr1*!) « n,n 
"0 in I - 1. N 
BM(t) • OtO 
pin» ■ fi.n 

Y(t,I) » 0.0 
Y(?, !) ■ 0,0 
7(1.l> ■ 0,0 
7(7,   1) ■ 0.0 
Ad) * 0.0 
no IB J « 1, N 

10 qd. J) «0.00 

C BNTFR DATA 

PE*n INPCT TAPE ^, 2n, BL, (EKI), I ■ t. N) 
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mmm^^ 

2n  FOl»»<*T   (F9.4  /   (9612.5)) 
BE«n   INPLT   T*I»P   5,   25,   (B*(I).   I   ■   1, 

25  ^0<»M»T   (5tl2,5) 
CALCULATE DCLT* t 

RN ■ N 
H ■ RL/CK 

W) 

C  LOAn THP ARRAY Rd.J) 

no 39 t ■ 1,K 
^(l, I) » HHCf) / »Md) 

"~" Al • I 
U4 a H*M*H«H 

30 "(?, I> » (AI • 1.1 ♦ PMd» / BM(2) 
HO 4() I ■ 3, N 
0(1, 1-2) ■ Pi(I-l) / ( M4 * BM(!)) 

_ Rd, 1-1 ) ■ -2, * (FI(I-1> ♦ FKD» / ( H4  • BM(t)) 
4n"B(!,!> » «PKI-D ♦ 4. • fil(I) • EKf^i)) / ( H4 • RMdj) 

* ■ M - X 
no 90 I * 3, M 

5n "(I. !♦!> ■ -2. «(Fim • E1(I*U) / ( M4  • «Md)) 
L ■ N - 2 
DO 6fl I ■ 3. L 

6« "(f. r*2) « FI(I»i) / ( H4  ♦ RHd)) 

C  ELI^IK-»": TERMS IMVOUVING Yd,!) 

nO 70 I « 2. N 
RII.M » B(i, I) • 9(3, 1) 

70 R(1, I) » MO. !)- 8(1, 1) 

C FLFMINATP TERMS iNVOLVlMR Vd,2) 

no HO I ■ 3, N 
A(I) • H(2,I) ♦ «»,3,?) 
R(3, I) « H(^.l) - Ad» 
0(',f) ■ B(2, I> * 8(4,2) 

0n "(4,1) » 8(4.!) - «(?, I) 

C MPPE" LETT JUSTIFY THE RFDUCFD MATRIX P FOR fNVERSION SUBROUTINE 

nO 90 I « 3, N 
DO 9o J ■ 3, M 

9n 0( f.?, J-2) « 8d, J) 

C fNVEPT TME MATRIX 8 USlNfi THE SUBROUTIMP MiTF^V 

CALL MATINV ( fl.L, inO. ARRA. 0, ICi'L, fOW, IT3. DETERM) 

C nETERMINP THE DOMINANT EIGFNVALUP BETA IF THF "ATRIX B AND THt- 
C    PORBPSPOKDI^R EIRP^VPCTOR Y(I,J) A»!" CALTULATE P(i) 

Iflr» STrRF ■ 0,0 
ITFR « 0 

C »SSU^E AN AR8ITB4BY T^rTlAL VECTOR, Y(t,l) HMOSE L*ST COMPONFNT IS 
C      UNITY 

Y(1»M) ■ 1,0 
19n PO 200 I ■ 1, L 

TO ?()0 J « 1, L 
?0n v(9, 1*2)   ■ y(?, 1*2) ♦ Bd,j) • Yd, J»?) 

ITCR ■ ITER ♦ i 

C PXTRACT t SCALAR QUANTITY. HPTA, AS TO PfmiCP THf- I AST rOMPnNPAjT OF 
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•? 

V<1,   I)   TO  UNITY 

WT*  ■ V<2,N) 
no 2jo i ■ ?, N 
yfi.O ■ V(?,i) / v(?,«(> 

?ln v<>.l> ■ B.B  

.C TFST  «ET*  fOR  CONyi»WNCi 

TEST  ■   *9SF   (   BETA  •  STORE   ) 
HORP VBCt*-  

IF   (   TFST   .   1.0E«l3   )   21».   1*8»  195 

C TMP FIRST NATURAL CIRCULAR FREOUeNCY P(H IS TME SOUARE ROnT OF 
C    if  RlT* (Riü / SEC) 

" 'H*"»Vi)  «nso^tri ÄBSF( 1.0 V BETA )) 

C  CALCUL4TS  tHt   VALUES  OF  Yd,?) "ANlTm.rr 

""ifä'Pö'zsO I ■ s, N   ' ■■" 
*i ■ 1 

~  ?5n"Yll,*>   ■   y(i,2J   -   (A!   -   1.)   •   tBM<I)   /  BH(?))   •  Y(1,I) 
00  240   I   ■   2.   M  

240   Y(l.l)   t  Y<i,i)   .   JgSTn   /  BM(l))   *   Y(i,i) 

■^CÄrCifC ATT'V A'CUis OF  X  f OR  EACH ST AT I ON 

YJlJ "i  «/?, " 
 oo ggo I ; 2.N   ^—-j—      _     _ _ 

 280 »(!) ■ «<!)  »  (BI » t,>  * H  

,C»LCllLATt  THE  VALUE  Of  THE  r|a$T.NATURAL  FRgflUEMCY  ftl)   (CYC/SEC) 

F(l)   »  HI)   I   (2.   «   3.1418»  

 JE..üRlIi.fiyUi»TA       .„ 

 MflIlWIgia..T*Pg ■fjL.aflli.JUJ'-A-L.U.lli J ?. t  I* BHil),.l.-..uM .. 
Sfln FORMAT (1H1, 97X. 9H DATA /19X. 17H PAR LENGTH, BL « , FID.4. ?4X, 
 1 24M NUMBER OF tTATIONS. W ■ . 13 // HXi gAH-PiflUlTYl Eli />T t 

lACN STATION. 21X.42H HASS PER UNIT LENQT», BM, AT EACH STATION / ( 
 ?Ä?JLt„?!!..fi4„I2,-J2it.lx.H2,.'-*.^AH.jLp/.j^xi»l. .23X, 3H »M, UJ _2H •, .. 

4E12.9, 18H LRF SECXSEC/INXIN)) 

C WRITE OUT ANSWERS 

MRITF OUTPUT TAPE 6. 310. P(1).F(1). (I .XCI). I .Y(1.I),|al,N) 
 aiA..r.WJUX.i/-SaiL.tH ANSWEBS ,//.A?l'«-8&jJ- irU»!ILAHE»tT«k.MEQüEN5T. _. 

1// 3«X, 4H Pi«,F10.4, 8H RAD/SEC. 3X. 4H Fn.FlO.4, SH CYC/SEC 
 1// 84X. 11H N(>Pp BHA^E /t4gX, 2H K,I>. 2H •,Fio.». 3H JN, 4X, 

3 2k Y,i2, 2H «.FlO.»)) 
MR1TB OUTPUT TAPE ♦. 320. ITER 

320 FORMAT (/ 4iX. 2TM THE NUMBER OF ITERATIONS », I«) 

C"ir "WLT"fW§'FlR8T'NÄTÜRÄU ^BÖÜENCTlSREÖÜIREO THE FOLLOW I NO MAY 
, 5„ lf..0MMjnM_iL^5-JNt.COHP.«TlR J1NT.JIAC« TO ITATEMgNj .9?? . 

C LOAD TME HATR1X C  

-*Ao„iJL.f-.N-J.  
DO 780 I ■ 1. KL 

C(t,j)  ■  ■<I*1,J«1)   •   <V(1,I*3)   /  YM.SM   *  B(1,J*1) 
Tan  CONTINUE 
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C nETEBMlNF THE nnMI^ANT EIGFMV*LUF RAHMA OF THE KUTRIX C AWn THE 
C     COHRPSPOKDINR EinEMVFCTOP 7(1,JJ Awp CALrULATF P(?» 

^TCRF « 0,0 
ITFR ■ o 

C ASSUME AM ARBITRARY iMFTfAL VFCTPR, 7(1.1). UHOSF LAST CO>«PONEMT IS 
c   UN f T y 

7(1, N-2) a   i .0 
72n rONTlNUE 

n0 760  I s 1, KL 
PO 7*0 J « 1, KL 
▼ <». 1*1)  . ?(?, i*i) ♦ rn.j) * z(i. j*i) 

76n rONTlNOF 
ITBR ■ 1TER ♦! 

B MTRACt Ä SCALAR QUANTITY, GAMMA'. AS TP BEOlirE TME LAST COHPONFNT OF 
C 7(i, J) TO UNITY 

RAMMA »' Z(?, Kj.g) 
nO 7«0 1 • 2. L 

_ .  _ 7(1,?) ■ 2(2,1) / 7(2,►'.?) 
^n 7(?, I) ■ o.n 

C TEST OAMMA FCR CONVERGENCE 

TEST ■ AflSF ( GAMHA . STORE ) 
STORF ■ GAMMA 
fT   (   TEST   -   i.RF-iS   )   79n,   720,720 

C   TMF   «COMD   WATIJR4L   CIRCULAR   FREQUENCY   P(?)   IS   THF   SQUARE   ROOT 
C OF   5/GAMMA      (RAD/SFC) 

79n   P(>)   .f_JlBTF(__A^9SF(_1^n   /^JSAMMA   )) 

_CALCllLATB   THE   VALljE   OF   7<1,   I) 

. . "On SU»» , o,0 
PO 820 I ■ 2, L 

 yjL.SU'L- SUüLl R (J^U . i (_l, 1) / Y < 1, 3» 
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DISCUSSION 

P. Brig (Untv. erf Okla.): There is one 
point on which I would like to disagree. I do 
not think it affects anything you did, it is just a 
statement. You said that if you worked this 
system of equations straightforwardly to get 
the eigenvalue, the highest eigenvalue would be 
infinite. That is not so because you have a 
finite matrix and the largest eigenvalue will be 
finite. In theory, anyway, you could start from 
the highest and work down. 

Mr. Witte: That is right. We use a finite 
difference approximation and hence the largest 
eigenvalue has no meaning at all. We want to 
get down to the lowest eigenvalue where the 
accuracy Is. 

H. Saunders (G. E. Co.): Your explanation 
of the finite difference was good. But I think 
one of the better ways of doing it, if you take a 

finite element approach, is to take sections and 
average them. You would probably get much 
better results for the frequency and mode 
shapes. Also, you have neglected a rotary In- 
ertia and shear deformation. At the higher 
frequencies that becomes important. Have you 
given any consideration to using the rotary 
inertia and shear deformation In your analysis ? 

Mr. Witte: Yes. It Is a very complicated 
problem; that's why we stick to something sim- 
ple.  But I did do some work In averaging out. 
The frequencies came fairly close but the mode 
shapes did not. I found that there was consid- 
erable difference in averaging all these and 
obtaining the mode shape. 

Mr. Saunders:  Yes, that is using finite 
differences.  If you try to use a finite element 
I believe the mode shapes would come out much 
better 
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SATURN V COMPONENT VIBRATION TESTS 

USING SEGMENTED SHELL SPECIMENS 

Chintsun Hwang 
Northrop Corporation, Norair Division 

Hawthorne,  California 

and 

Charles  E. Lifer 
NASA, Marshall Space Flight Center 

Huntsville, Alabama 

This paper describes an analytical and experimental program to de- 
velop and verify techniques for designing segmented shell specimens to 
be used in component vibration tests.   The purpose of the program was 
to develop segmented shell test specimens of reasonable size that re- 
tain, as much as feasible, the dynamic characteristics of the complete 
shell structure.   The analytical phase consisted of the development of a 
general shell analysis program in which the impedances of the ring 
stiffeners were considered.   A finite difference computer program was 
applied to the modal analysis of the segmented jhell specimen.   The 
experimental phase included the evaluation of localized flexible sup- 
ports, the development of Saturn V structure dynamic scale models, 
vibration tests of the complete and segmented shell models, and the 
vibration test of a full-scale segmented Saturn V shell specimen with 
mounted components. 

INTRODUCTION 

The shell structure in the various stages 
of the Saturn V system are large, massive, and 
intricate.  To conduct vibration tests of the 
components that are mounted on the shell 
structure, correspondingly large and expensive 
facilities are needed.  The conventional ap- 
proach to the development and qualification 
vibration testing of equipment and subsystems, 
in which the item is attached to a rigid fixture 
and tied as directly as possible to an exciter, 
in most cases results in a poor reproduction of 
service loads and stresses.  This is especially 
true for shell-structure mounted components 
(electronics packages) in which the impedance 
characteristics are not too greatly different 
from those of the mounting shell structure.  A 
study was conducted by the Marshall Space 
Flight Center and Northrop Norair to develop 
techniques for designing relatively simple test 
fixtures which closely reproduce the significant 
response characteristics of the shell structure 
in the vibration test of components.  The tech- 
niques could be used by a dynamicist to derive 

(from component and structural design infor- 
mation) the appropriate dimensions and bound- 
ary restraints for a loca.' section of shell 
structure, to which the component was attached 
during the test.  By simple variation in fixity 
and attached masses, the same fixture could be 
used for tests of several items. 

Vibration tests on equipment or systems 
mounted on shell structure segments are gen- 
erally of two types, based on the method of ex- 
citation.  In one case, the exciter is connected to 
a fixture which attaches to the boundaries of 
the shell segment, and test levels are controlled 
at the boundary or at some selected point on 
the specimen.  In the ether case, the exciter is 
connected to a selected point, or points, on the 
specimen, and the boundaries of the specimen 
are restrained by a passive fixture; test levels 
are controlled ax the exciter attachment point 
or at some selected point on the specimen. 
Test level contvol may be through acceleration, 
displacement, or force measurement. 

The techniques described in this paper are 
applicable to both of the above cases, assuming 
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that the «xdter capabilities and specimen 
strength capabilities are not limiting factors. 
Whan very high test levels or unusually mas- 
sive test specimens are involved, these limita- 
tions must be considered in the selection of the 
test approach. 

The test design procedure involved a num- 
ber of steps, starting with the analytical and 
experimental modal analysis of the complete 
and uncut shell structure. The analysis was 
followed by shell segmentation and edge condi- 
tion evaluation. A parallel program evaluated 
the dynamic characteristics of the flexible sup- 
port» to be applied to the segmented shell. 
After the test configuration was determined, 
a finite difference computer program was used 
to predict the modal data of the flexibly sup- 
ported and segmented shell structure. The 
■uRCMsfül vibration test of a full scale Saturn V 
shell specimen conduded the procedure. In the 
following paragraphs, the important features of 
the test technique are described. 

SHELL STRUCTURE ANALYSIS 
PROGRAMS 

Two analytical programs were developed to 
predict and evaluate the shell dynaxuic behavior. 
For a complete shell of revolution, eight simul- 
taneous linear differential equations are used 
in the standard manner [1]. Corresponding to a 
specific harmonic number, n, the dependent 
variables are the four displacement components 
(wn'un'vn'^n) a1"* the four stress components 
(On • N«n • Nn • ^n )•   T,,e stress components rep- 
resent the transverse shear, the meridian 
membrane stress, the modified in-plane shear 
stress, and the bending along the meridian di- 
rection, respectively.  The equations are inte- 
grated numerically in a segment-wise manner 
to minimize the accumulated errors.  To ac- 
commodate the dynamic impedances of the ring 
stiff finer s, the shell meridian is divided into 
segments in such a manner that all the stiffen- 
ers are located at the terminals of the segments. 
During the numerical integration process, the 

.063 DIAMETER RIVETS 108 PER 
ROW EQUALLY SPACED 

,-.071 

FILL CAP WITH RESIN 

LAP JOINTS TO BE 
LOCATED W* APART 

USE .0*3 DIAMETER 
RIVETS 1.0 SPACING 

ALL ANCLES TO BE HYDRO FORMED 

SECTION A 

.05 (REFi 

FILL GAPS WITH RESIN - Material AL-6061-T4 

Fig.  1.   Saturn V instrument unit scale model design drawing 
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four stress variables are modified, as shown 
below, when a ring stiffener Is encountered. 

^n AN, 

> = 

zii(w)   ZuC'")   ZuO")   ZMC") 

ZJI^)  ZJJC^) ^«C") 

(symmetric) Z44(a') 

»  "< 

where the left side column matrix Indicates the 
Increments In shell stresses owing to ring im- 
pedance components z,,^), zl2(ai), etc., cor- 
responding to a circumferential harmonic 
number, n.   The above formulation is mecha- 
nized in a computer program which has yielded 
consistently satisfactory modal information. 
Typical analytical data derived from a one- 
tenth scale Saturn V instrument unit shell 
structure (Fig. 1) are plotted in Fig. 2, together 
with the sinusoidal vibration test data. 

For segmented shells with flexible point 
supports and attached masses, a finite difference 

computer program was developed to generate 
the modal data. In this program, the segmented 
shell middle surface is divided into a grid pat- 
tern. A matrix equation Is established, baaed 
on the shell dynamic equation and the boundary 
conditions of the shell specimen, considering 
the impedances of eccentrically located string- 
ers and stiffeners. The matrix equation Is re- 
duced to an eigenvalue formulation in which the 
displacements at the grid points form the com- 
ponents of the eigenvector. The basic matrix 
formulation for this program is shown in Fig. 3. 
For a typical segmented shell (Fig. 4), the 
modal displacement data obtained by this pro- 
gram are plotted in Fig. 5. 

The experimental program was divided 
into three major tasks:  Modal and impedance 
surveys of shell structures, fixture parameter 
selection and evaluation, and segmented shell 
design and tests. The first two tasks were ex- 
ploratory and preparatory in nature; the knowl- 
edge gained in the process was used in the final 
segmented shell design.  The remainder of this 
paper describes the highlights of the experi- 
mental program. 

MODAL AND IMPEDANCE SURVEYS 
OF SHELL STRUCTURES 

To obtain Saturn V shell modal and imped- 
ance data and to check the validity of the ana- 
lytical results, a number of one-tenth scale 
models were designed and fabricated. The 
shell structures chosen were those in which 

EOT    318 Hz 

1     2    3J 

Fig. 2.   Experimental and analytical deformation data 
along the meridian of the instrument unit scale model 
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Fig. 3.   Formulation of the coefficient matrix 
for the   finite difference   computer program 

Fig. 4.   Test setup of the instrument 
unit segmented model 
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K - 1*30 lb. /to. 

O SUPPORTINO POINTS 

Fig. 5.    Typical analytical modal pattern representing 
a quarter of the instrument unit panel 

I 

components were attached. Shell models of the 
Saturn V instrument unit and the S-n thrust 
cone structure are typical examples which are 
illustrated in Figs. 1 and 6. In designing the 
shell models, all the ring stiffeners were 
scaled down, based on dynamic similarity re- 
lations. The longitudinal stiffeners were not 
incorporated in the design.  Their stiffness 
contribution was merged with the skin stiffness 
in choosing a proper shell model skin thickness. 

The shell models were subjected to vibra- 
tion tests to acquire the modal and impedance 
data for shell segmentation purposes.  The data 
recorded included the response amplitude vs 
frequency, the impedance vs frequency, and 
detailed mode shapes corresponding to natural 
frequencies. Typical driving point impedance 
data is shown in Fig. 7 for the Saturn V instru- 
ment unit scale model (Fig. 1).  Typical shell 
response data is shown in Fig. 8 for the S-n 
thrust cone shell structure model (Fig. 6). 

TECHNIQUES OF FIXTURE 
PARAMETER SELECTION 

Various types of flexible supports were 
fabricated and tested to evaluate their dynamic 
characteristics. Dashpot type dampers were 
tested and found ineffective in controlling the 
vibration amplitudes.  For support evaluation 
purposes, a solid aluminum rectangular plate 
was used and tested. The use of a rectangular 
plate facilitated the dynamic analysis so that 
the flexible supports could be evaluated conven- 
iently. Experimental modes of the rectangular 

plate obtained during the support fixture evalu- 
ation phase are shown in Figs. 9 and 10. To 
predict and evaluate the experimental modal 
data, a simplified version of the finite differ- 
ence computer program described previously 
was used to generate the analytical modes of 
the plate. The analytical technique facilitated 
the choice of support design parameters.  K 
also served to interpret the main features and 
peculiarities of the plate dynamic behavior; for 
instance, the cantilever type vibrations of the 
unsupported corners of the rectangular plate 
(Fig. 9) were evaluated and controlled through 
the use of the finite difference computer pro- 
gram. 

Based on the analytical and experimental 
modal data, a part of the component mounted 
shell was selected as the segmented specimen. 
The lines of segmentation were determined, 
based on the local displacements and shell 
stresses. These lines vere usually located a 
fraction of a half of a wavelength away from 
the nodal lines of some major mode or modes. 

A major criterion in shell segmentation 
was to retain as many as possible of the major 
vibration modes of the uncut shell structure. 
For this purpose, proper flexible supports were 
used at selected points along the edge of the 
shell. Weights of appropriate mass and mass 
inertia were attached to the edges to replace 
the edge stresses existing in the original uncut 
shell and to retain the modal patterns. Because 
of practical limitations in the degree of com- 
plexity of the supporting fixtures, it was not 
feasible to duplicate all the natural modes of 
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Fig. 6.   S-U thrust cone scale model design drawing 
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400        500 600 

FREQUENCY (Hz) 
1000 

Fig.   7.     Driving point  impedance 
of the instrument unit shell model 

200 2» 300 

FREQUENCY (Hi) 

Fig. 8.    Response oi S-1I thrust cone model with mass attachments 
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Fig. 9.   Hard-spring testing, 295.2 Hz 

(a) Intermediate support« 
on shorter sides,   126 Hz 

(b) Intermediate supports 
on shorter sides,   291 Hz 

Fig. IG.   t.      ner-supported plate 

the complete shell structure. The design crite- 
rion then was to retain the more significant 
modes in the segmented configuration.  In some 
cases, it was found desirable to use different 
flexible supports for various frequency ranges. 
For different frequency ranges, the support and 
attached edge mass configuration may be modi- 
fied to obtain a better match in the Impedances 
between the complete and segmented shells; for 
Instance, increasing the attached masses tends 
to tune down the frequencies of the natural 
modes of the segmented shell. The design con- 
figuration reached in this manner was further 
checked by an analytical investigation. A typi- 
cal example of the analytical data wvt shown 
previously in Fig. 5. 

A fixture design of the segmented and flex- 
ibly supported Instrument unit shell model with 

simulated component attachments is shown in 
Fig. 11.  A photograph of the same structure 
was shown in Fig. 4, as mentioned previously. 
The corresponding impedance plot for the shell 
segment is shown as the dotted curve on Fig. 
12. Note that the plot is for a full size shell 
specimen, as proper adjustments have been 
made for the impedance and the frequency ac- 
cording to scaling relations. 

FULL SCALE SATURN V 
SHELL TEST 

The shell segmentation technique was ap- 
plied to the Saturn V instrument unit prototype 
(full-scale) structure. Vibration tests were 
successfully conducted on the full-scale seg- 
mented shell structure, with mounted components 
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Fig. 11.    Vibration fixture for the Saturn V in. 
strument unit  segment,  one-tenth scale model 

KM) 1JU 

FREQUENCY (Hf) 

Fig. 12.   Driving point impedance of the instrument unit    egment 
with components attached,  configuration I 
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Fig. 13.   Vibration jig for the Saturn V 
instrument unit shell segment 

making use at the scale model data acquired 
previously. The test setup is shown in Figs. 
13 a=i X*. 

During the tests, accelerometers were 
mounted at a number of locations to monitor 
the Tibratioo amplitudes. The vibration Input 
was controlled so that the monitored accelera- 
tioo level followed the NASA specification as a 
function of the excitation frequency. The driv- 
ing point impedance data recorded during the 
test are plotted as a solid curve in Fig. 12. As 
the figure also shows the adjusted impedance 
data of the segmented scale model, a compari- 
sor <tf the two curve« gives some indication as 
to the errors introduced in dynamic scaling of 
»hell models. 

CONCLUSaONS 

The work described in this paper estab- 
lished the feasibility of and some guide rules 
for performing component qualification tests on 
segmented Saturn V shell structures. Tuis ap- 
plicauoo should result in a reth.-^"" A hard- 
ware failures because of unrealistic test condi- 
tions, and should eventually reduce the system 
weight. The increased cost at test fixtures 
should be mere than offset by the reduction in 
redesign and retesting costs. 

Fig. 14.    Closeup of the Saturn V instrument 
unit shell segment with flexible supports 
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DISCUSSION 

F. Smith (Martin Marietta Corp.): I think 
the work you have done is very interesting. 
When you were exciting the full-scale speci- 
men, were you attempting to simulate the re- 
sponse of the full shell to an acoustic driving 
function? In other words, was your shaker 
really attempting to simulate a point input? 

Mr. Hwang: No, we were using a single 
frequency sweep. The spectrum amplitude at 
each frequency is in accord with the accelera- 
tion level specified by NASA. 

Mr Smith:  Let me ask the question in 
Have you any relation between the reverse. 

response of the specimen owing to the shaker 
and what the response would be with acoustics, 
let us say during the launch phase? 

Mr. Hwang: No, we do not have that. What 
we are given is the acceleration level which 
should be obtained at a certain point on the sheU 
structure. That was used as a monitor or con- 
trol point for the test. 

Mr. Smith; 
than one axis? 

Were you doing this in more 

Mr. Hwang In the thrust cone it was done 
in quite a number of axes or directions normal 
to the conical shell structure and also in the 
thrust direction of the thrust cone. 

Mr. Smith: So your test specimen really 
did not simulate three-axis response? 

Mr. Hwang: No, it did not. 
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This paper presents the application of linear flowgnphs to the free vibration 
analysis of structural systems.   It is shown that the basic structural flow- 
graph can be. formulated directly from an examinaticn of the physical system 
under consideration.   These flowgraphs are essentially independent of the 
type of loading, and the displacements at discrete points are represented by 
dependent nodes.   In general, the dependent variables are vectors and the 
graph is referred to as a matrix flowgraph. 

Following a brief discussion of the mathematical operations associated wit 
flowgraphs, it is shown that the basic structural flowgraph can be easily 
transformed into the natural frequency flowgraph.   In this latter graph, the 
branch transmission factors are in terms of both the stiffness properties of 
the members and the frequency of vibration.   General expressions for the 
branch transmission matrices factors are derived by employing finite ele- 
ment techniques. 

By employing the graph determinant, the values of the natural frequencies 
can be readily computed with a digital computer.   Finally, a further simple 
transformation yields the eigenvector graph which is used to establish the 
elements of the eigenvector associated with each natural frequency. 

INTRODUCTION 

A systems-analysis approach to the formu- 
lation of the natural frequency equation and the 
determination of the eigenvectors for certain 
linear structural systems is presented in this 
paper. Developments in topology and systems 
analysis have revealed the existence of an iso- 
morphism between oriented linear flowgraphs 
and structural systems [1]. These structural 
graphs have been used previously to a limited 
extent in studying the static and dynamic re- 
sponse of systems [2,3].  As a result of the 
work that has been done on static systems, it 
has become apparent that flowgraphs have spe- 
cific advantages, particularly in seeking a 
better understanding of the design process. 

Perhaps the most important technique de- 
veloped for static systems analysis, using flow- 
graphs, is the concept of superimposing 
building-block flowgraphs to form the complete 
graph. This procedure is extended here to the 
case of the free vibration of discrete mass sys- 
tems such as shear buildings, and continuous 
systems such as plane frames. As will be 
shown, the nodes of the flowgraph for discrete 
systems are the displacements of the masses, 
whereas for continuous systems, they are the 
displacements of the Joints. In the Utter case, 
the mathematical properties of the flowgraph 
are defined by the end properties of structural 
components derived from a finite element 
method [4]. 



A brief dlKUMlon about flowgraphs in gen- 
•ral precede* the enmination of their applica- 
tion to free vibration problems. 

MATRIX AND SCALAR FLOWGRAPHS 

In general, a flovgraph i« a schematic 
representation of the interrelationships between 
the Input to a system and the consequent behav- 
ior of the system. These same relationships 
qm be expressed by simultaneous equations %** 
not with the same clarity or ease of formulation. 
One advantage of flowgraphs is that their form 
can be deduced directly from the topology of the 
system under consideration. The fundamental 
concepts and mathematical operations associ- 
ated with oriented linear structural flowgraphs 
are as follows [5]. 

A flowgraph consists of a network of di- 
rected branches connected to nodes in a man- 
ner that reflects the geometry of the system. 
To illustrate, Fig. 1 shows an oriented flow- 
graph. The variables that motivate a system 
are denoted by source nodes and represent in- 
dependent inputs into the system. The depend- 
ent variables that represent the resultant be- 
havior of the system are denoted by dependent 
nodes. In the figure the source nodes are 
lettered a, b, and c while the dependent nodes 
are numbered 1, 2, and 3. 

These nodes are connected by directed 
lines or branches having associated transmis- 
sion factors that relate the independent and 
dependent variables. In the case of structural 

systems, these reflect the elastic properties 
of the components. 

Generally, the variables are represented 
by vectors and the graph is referred to as a 
matrix flowgraph. The transmission factors 
for these graphs are then square matrices. In 
the special case where each node represents 
a single variable, the graph is referred to as a 
scalar graph, and the transmission factors are 
scalars. In this paper, matrices and vectors 
will be designated by the use of parentheses, 
i.e., (t),,, while scalars will be designated 
without them, i.e., t,,. 

The branches entering any node can be 
used to obtain the corresponding equation re- 
lating that variable to the others. For example, 
the dependent variable (x), in Fig. 1 is related 
to the other variables by the expression 

(*), =  (t)l(r)1 +  (t)J,(x)2 (1) 

Fig.   1.     Oriented 
flowgraph example 

The variable (x), does not appear in this ex- 
pression because there is no branch from that 
node. 

Although of interest, equations of this form 
are not of any particular value because the 
flowgraph provides the same information picto- 
rially. The more important equations are the 
solution equations that can be obtained from the 
flowgraph. These provide the solution of each 
dependent variable in terms of the Independent 
inputs and the transmission factors. 

To date, practical solution algorithms for 
multiple-connected matrix graphs have not 
been developed, although Kirchgessner [6] and 
Enger [7] have presented useful algorithms for 
series matrix graphs. As the examples to be 
considered in detail in this paper Involve scalar 
flowgraphs, the solution algorithm for matrix 
graphs is reduced to the algorithm for scalar 
graphs presented by Mason [8,9]. Before con- 
sidering his loop nil«, the following further 
definitions are required. 

A forward path is defined as any path orig- 
inating at a source node and terminating at an 
interior node. Such a path can include any par- 
ticular node only once. The associated forward 
transmittance, T, is the product of the trans- 
mission factors of the branches that constitute 
the path. Considering the figure, one of the two 
forward paths from the source node, s, to the 
dependent node, 2, is given by the path 
(a -1 - 3 - 2). The corresponding forward 
transmittance is 

(2) 
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A loop is a series of branches that origi- 
nate and terminate at the same node without 
encountering any particular node more than 
once. The product of the transmission factors 
of all the branches In the loop is defined as the 
loop transmittance, L.   For example, in Fig. 1, 
there are three loops (1 - 2 -1), (2 - 3 - 2), and 
(1-3-2-1). The corresponding loop trans- 
mittance s are (t^tj,), (t13t32), andfr.jt 
It Is noted that loops cannot Include source 
nodes. 

The multiplication of scalar quantities is 
commutative and therefore the ovder of multi- 
plication for loop transmlttances and forward 
transmlttances is immaterial. However, the 
noncommutatlve nature of matrix multiplication 
must be satisfied in arriving at solution algo- 
rithms for matrix graphs. This fact is respon- 
sible for their considerably more complex form. 

The scalar graph determinant is defined as 

A = l - lLp + iLpL., - apLqLr (3) 

in which Lp represents all the loops in the sys- 
tem, LpL   all the pairs of nontouchlng loops, 
LLqLr au the triplets of nontouchlng loops, etc. 
The algebraic sign is positive for an even num- 
ber of loop products and negative for an odd 
number of loop products. Again considering 
the example, the graph determinant is 

= 1 - t12t21 - t„t,2- t.jtjjt,,.      (4) 

The path determinant is a quantity associ- 
ated with a forward path. It Is obtained from 
the graph determinant by striking out all terms 
containing transmlttances of loops that touch 
the path.  For the forward path from the source 
node, a, to the dependent node, 2, the path de- 
terminant is 

Ai-i-3-a - 1"Li,^-i"Li>s-i"Li,*-.2-i = 1      (5) 

Mason's loop rule states that the output, 
Gp,, at some specified dependent node, q, In 
terms of a unit input at the source node, p. Is 
equal to the sum of the products of the forward 
transmlttances, Tpq, and their corresponding 
path determinants, Apq, divided by the graph 
determinant, A.   Thus 

ZTP«A«. (7) 

Considering all the Inputs to source nodes, the 
final value of the dependent variable, xq, Is 
given by 

t-** ^T„„ A„0 p    PA   P<I (8) 

Thus each of the dependent variables can bo 
solved Individually by considering the scalar 
flowgraph only. 

NATURAL FREQUENCY FLOWGRAPHS 
FOR DISCRETE SYSTEMS 

In this section, a basic flow^s-aph ie devel- 
oped that can be used to represent a system 
made up of discrete masses and springs. It 
will be shown that this flowgraph is only a func- 
tion of the geometry of the system.  From this 
basic flowgraph, the natural frequency graph 
can be formulated and used to determine the 
natural frequencies of the system. 

Consider the generalized three-mass sys- 
tem shown in Fig, 2.  Let the displacements 
associated with mass m, be given by the vector 
(0)4 where 

(U)i 

L^Ji 

(9) 

because this forward path touches all possible 
loops. On the other hand, the path determinant 
for the forward path from source node, a, o 
the dependent node, 1, is 

A«.i = 1 " Li^i-i - L
1.J-J - Lt.y.2-i 

1   "   ^3-3-J   "    1   "   tJ3t31 (6) 

as the loop (2-3-2) does not touch this forward 
path. 

Assuming that these displacements are the de- 
pendent variables for the system, they can be 
represented by nodes of a flowgraph.  From 
the connectivity of the masses in Fig. 2, it is 
apparent that the flowgraph in Fig. 3 does rep- 
resent this system. The dependent nodes de- 
note the dependent variables that, in this for- 
mulation, are the displacements of the masses. 
Any external static or dynamic loads applied to 
the masses would be denoted by inputs to the 
flowgraph at the source nodes. However, for 
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Fig. 2.   Generalized three-mass system 

Fig. 3.    Basic flowgraph for 
three-mass example system 

(K)li = (Ri)(Ki),(Ri)T (10) 

where 

(Ri) = 

Ml       "H "In 

a a 'll      -JJ 'In 

'In 

Fig. 4.   Natural frequency graph 
for three-mass example system 

free vibration, a* there are no external actions, 
these source nodes can be deleted. The result- 
ant graph is shown in Fig. 4 and is referred to 
as the natural frequency flowgraph. In this 
graph, the dependent variables are the ampli- 
tudes. Having established the torm of the graph, 
the next step is to derive the transmission 
factors. 

The stiffness of the n springs connecting 
to mass si i are represented by an unassembled 
stifbiess matrix, (K^ , where si denotes mem- 
ber axis. This is an (n *n) diagonal matrix 
having elements Sj, j =1 n, where s de- 
notes spring stiffness.  From basics, the direct, 
nodal, stiffness matrix, (K)u, in system co- 
ordinates is given by 

= rotation matrix for node i. 

The columns of (Rj) are the direction cosines 
relating the spring axis to the system coordi- 
nates, assuming that the near end of the spring 
is at mj. 

Letting spring q connect the two masses, 
mi and nij, then the cross, nodal, stiffness ma- 
trix, (K)^, in system coordinates is given by 

(«Oli = 

roiqi 

a2q 

La3qj 

[alq       "jq       aJq] 

.(ID 
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It follows that for free vibration, the dy- 
namic equilibrium of the forces acting on mass 
mi is given by: 

(M)1(ü)1 + (K)u(u)i ♦  r (DJJCU), = 0     (12) 

where {U)l is a diagonal matrix having ele- 
ments equal to m,. 

For small displacements it is assumed that 
the displacements can be expressed by the 
product [10]: 

(13) 

where p is the frequency of vibration in radians 
per second. Suostituting this relationship into 
Eq. (12) yields 

-P2(«<)i(«)i + (K)ii(«)i + £ (K)ii(»)j   =   o 

UI a, sin pt 

u2 = a2 sin pt 

UJ i 
a, sin pt 

L,    ~i L                                                 -* 

or (M) 

f(K)u - p^M),] (.), + ^ («)iJ(.)j   =   0. 

For the usual case, the first matrix term is 
nonsingular. Then the amplitudes, (a)i, can 
be expressed by the relationship 

(•), = -   [(K)ii- P'OOI]"' f (K)lj(«)i- (15) 

Thus a general expression for the branch trans- 
mission factors for the natural frequency flow- 
graph is 

(t)ji = - [Wa-p'COi]"1 (»)ij (16) 

Both the form of the natural frequency 
graph and the branch transmission factors can 
thus be derived directly from the physical sys- 
tem. As there are no inputs to the system. It 
can be shown that for a nontrivial solution for 
the natural frequencies, the graph determinant 
equals zero. 

For series matrix graphs, the algorithm de- 
vised by Enger [2] is readily applicable. For the 
two-loop series matrix graph in Fig. 4, the graph 
determinant with respect to node 2 is given by 

A» ll- (^„(t),,- (t)„(t)J = 0    (17) 

where (t)jl is given by the preceding equatioa. 
In general, Eq. (17) is easily solved by using 
prosresslvely increasing values for p* and then 
selecting those for which the graph determinant 
is zero. 

For plane systems, the preceding develop- 
ment is equally valid. In this case the depend- 
ent variables are vectors having two elements 
and the transmission factors are (2x2) ma- 
trices. Finally, for one-dimensional systems, 
the matrix graph reduces to a scalar graph. 

To illustrate the application of flowgraphs 
to the determination of the natural frequency of 
discrete systems, consider the mass-spring 
system shown in Fig. 5(a). The corresponding 
natural frequency flowgraph is shown in Fig. 
5(b). 

Using Eq. (16), the branch transmission 
factors are obtained directly from the physical 
system shown in Fig. 5(a). 

t,, = -(SiiSj-mjP1)"  (-S,) = 

'»I = "(S. + Sj-mjP2)    (-S,) 

S, + S,-B,pa 

S, + Sj-o^p1 

(Si ■jP')'    (-s,) = 

'JI = -(S^Sj-nijP2)'  (-S,) = 
SJ + SJ-^JP» 

> . 

(18) 

The scalar graph datermlnant given by Eq. (3) 
can be formulated directly and equated to zero. 
Thus 

Although for this relatively simple example, 
the graph determinant can be expanded to yield 
the usual frequency equation, normally it is prob- 
ably easier to evaluate the equation for succes- 
sively larger values of PJ. 

For shear buildings, with the mass assumed 
to be concentrated at the floor levels as suown 
in Fig. 5(c), the preceding approach can be ap- 
plied directly, as these constitute discrete 
systems [11]. 
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Fig. 5.    Example three-ma»» system 

KIQ1NVECTOR FLOWGRAPHS 
FOR DDCRETE SYSTEMS 

For systems represented by scalar flow- 
gnphs, the eigenvectors for each natural fre- 
quency can be obtained from an eigenvector 
flovgraph. One of the dependent nodes is 
•elected to be transformed into a source node 
by deleting incoming branches. It is assumed 
here tint the input to this source node is unity, 
i.e., the amplitude of the corresponding mass 
is unity. Using an eigenvector graph, the am- 
plitudes of all other masses can be computed 

I'S loop rule as discussed previously. 

These computations are illustrated for the 
one-dUaeasional, three-mass system shown In 
Fig. 8(a). The natural frequency graph for the 
syrtam is reproduced in Fig. «(a), and two of 
the poeeible eigenvector graphs are shown in 
Fyi. •(b) «nd «(c). As seen, node 1 has been 
transformed into a source node by removing 
the incoming branch, 2-1. 

The values of the relative amplitudes, a, 
and ■,, are then given by 

■»Z  "AT" 

(») »11*» 

where 

&, ■ graph determinant for eigenvector 
graph 

»•*».»»»• 

(»)      ', cC 

<c) 

Fig. h    Free vibration Qowgraph» 
for three-mass system 

It is noted that for this particular case it would 
have been simpler if node 2 had been trans- 
formed into the source node as shown in Fig. 
«(c). 

NATURAL FREQUENCY FLOWGRAPHS 
FOR PLANE FRAMES 

In the preceding examples, each node of 
the Qowgraph represented the displacements 
associated with one of the masses, and the 
springs were assumed to be weightless. Now 
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consider a system composed of axial-bending 
members connected to form a plane frame. 
Associated with each member, i, is a uniform 
distributed mass, itij.   In this type of system, 
flowgraphs are formulated for which the depend- 
ent nodes represent the displacements at dis- 
crete points. It is shown that the branch trans- 
mission factors, in general, include dynamic 
stiffness factors and that the natural frequencies 
for the system can be computed in a manner 
similar to that noted in the preceding section. 

To illustrate the form of the flowgraphs 
for a plane frame, consider the structure in 
Fig. 7(a). 

At each Joint of a plane frame there are 
three possible displacements denoted by 

Wi 

LueJ 

Thus the matrix flowgraph for the structure in 
Fig. 7(a) is as shown in Fig. 7(b). As joints 7 
and 8 are fixed supports, they are excluded from 
the flowgraph. Inputs to the system in the form 
of either static or dynamic loads would be ap- 
plied at the source nodes shown. In the case of 
free vibration, as there are no external loads, 
these source nodes are omitted and the result- 
ant graph is referred to as a natural frequency 
flowgraph. 

An alternate matrix flowgraph for this 
structure is shown in Fig. 7(c). In this formu- 
lation, the displacements for an entire level 
are represented by a single vector such that 

(")* 
(")2 

etc. 

The branch transmission factors are now (6x6) 
matrices. 

To derive expressions for the branch 
transmission factors for the flowgraph in Fig. 
7(b), a member is considered as shown in 
Fig. 8. The member axes are (x' -y') while 
the system axes are (x - y).   In the figure the 
near end is denoted by a and the far end by ß. 
These subscripts also imply actions and dis- 
placements with respect to the member axis. 
The actions shown are the forces owing to dis- 
placements of the ends given by 

(")a and      (u)ß 

The relationship between these displacements 
and the end actions (b)0 has been summarized 
by Ariaratnam [12] as follows: 

EA 

L^« 0 

EI   ,        EI 
0 — ^ 

EI EI 

-EA 

L 
0 0 "«' 

■-§*' 
EI 

V 

■f.*- u» 

(19) 

Jfi 
where 

i/', = M cot ß 

ipj - ß cosec fi 

, /     sin K sinh \ 
g>. ~ Kd [  

\1 - cos \ cosh K 

cosh K -  cos k 
<i>2 -- K2 

(T I) cos A. cosh 

sin K cosh k - cos K sinh X^ 

cos K cosh K 

d>    -  \   ( ''"^ - -   tl" -   \ 4 '       \1 - cos K cosh KJ 
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Fig. 7.   Illustrative plane frame and flowgraphs 

. /«in K coth \ + co« \ ainh \\ 
1 '        \ 1 - coi \ coth K / 

, / tinh K ■» »in K   \ 
**'        VI - co« X. cosh \ / 

K = L 
I       2\,/4 

fe) 
It is noted that when p equals zero, these dy- 
namic stiffness factors reduce to the usual 
static ones. Equation (19) can be written simply 
as 

(b).--  (K)a*<u). +  (K)^(uV       (20) 

Fig. 8.   Typical prismatic plane member 
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Thus the member end actions and the displace- 
ments are related by member stiffness ma- 
trices that include the frequency of vibration. 

The stiffness of the n members framing 
into joint i are represented by an unassembled 
stiffness matrix, (%i )„, where m denotes mem- 
ber axes. This is a diagonal matrix having 
matrix subelements (K)aa as shown in Eq. (19). 
From basics, the direct nodal stiffness matrix, 
(K)u, in system coordinates is given by 

where 

and 

(K)u = (Ri)(Ki)1,(Ri)
T 

(Ri)=   [(T)n (T)ia •   ■   •  (T)In] 

(21) 

(T)ij = 

cos e -sin e 0 

sin 0 cos e 0 

0 0 L 
J) 

Assuming that member q connects the two 
joints, i and j, then the crons nodal stiffness 
matrix, (t)^,, in system cuv^inates is given 
by 

(Vii = (T),, (^(Du (22) 

where (K)a/i is given in Eq. (19) and is with re- 
spect to member q. 

It follows that for free vibration the dy- 
namic equilibrium of the forces acting at joint i 
is given by 

As there are no inputs to the system, it can be 
shown that for a nontrivial solution for the 
natural frequencies, the graph determinant 
equals zero. 

To illustrate the application of flowgraphs 
to the determination of the free vibration of 
systems with distributed mass, consider the 
two-span continuous beam in Fig. 9(a). The 
natural frequency flowgraph is shown in Fig. 
9(b) and an eigenvector graph in Fig. 9(c).  For 
simplicity of presentation, consider transverse 
vibration only. As there is then only one dis- 
placement at each joint, the general matrix 
flowgraph reduces to a scalar one for this ex- 
ample.  Using Eq. (25), the transmission fac- 
tors are 

(?*.).]'(¥4 
(26) 

(K)u(u)i +  L (K)lj(")j = 0 (23) 

The scalar graph determinant can be formu- 
lated directly from the flowgraph and equated 
to zero. Thus 

a=   »-   »12*21-   «23^2 ^   o. (27) 

Again, for the usual case, the first matrix term 
is nonsingular and the displacements, (u)^ 
can be expressed by 

(u)! = -(Du' i: (Kh/iOj • (24) 

Thus a general expression for the branch trans- 
mission factors for the natural frequency flow- 
graph for plane frames with axial-bending 
me abers is given by 

Oü ■Ot)u(«)ij (25) 

Both the form of the natural frequency 
graph and the branch transmission factors have 
been derived directly from the physical system. 

(b) 

(c) 

VVb 
<•)      II —-p———■ 

iff'    member >     rft^        BMibcr 

l.SL 

Fig. 9.    Example beam 
vibration flowgraphs 
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Aa for discrete systems, the expression for the 
friph (totermiaant can be expanded to yield the 
naoal frequency equation. However, it is prob- 
ably simpler for most continuous structures to 
eraluate the equation for successively larger 
values of p*.  The eigenvector flowgraph shown 
in Pig. 9(c) can be solved using Mason's loop 
rule aa shown in the preceding section. 

CONCLUSIONS 

An important characteristic of flowgrapbs 
is ttot they can be formulated directly from the 
phynical system under consideration. The con- 
sequent interrelationships are seen from the 
resultant loops and branches. In the case of 
linear structural systems, the nodes of the 
basic structural flowgraph represent the de- 
pendent displ»:.amcnts of discrete points and 
thus, in general, the variables are vector quan- 
tifies. 

Following a brief discussion of the mathe- 
matical operations associated with flowgraphs, 
it is shown that the basic structural flowgraph 
can be readily transformed into the natural 
frequency graph. In this latter graph, the 
branch transmission factors are in terms of 
both the member stiffnesses and the frequency 

of vibration. Using the graph determinant, the 
natural frequencies can be computed using a 
digital computer. Flc«lly, a further simple 
transformation yields the eigenvector flowgraph 
which can be utilized to determine the elements 
of the eigenvector for each natural frequency 

This paper has demonstrated the feasibility 
of flowgraphs in the determination of the natural 
frequencies and eigenvectors of discrete and of 
continuous mass systems. It is concluded that 
this approach can be used effectively in the 
study of free vibration of structures. 

It is hoped that this paper will provide new 
insights into the use of flowgraphs in correlat- 
ing the physical system to its mathematical 
model.  Flowgraphs have the advantage that the 
solution of the dependent variables is direct 
and does not involve mathematical solution 
processes that lead to the loss of the physical 
parameters. 
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DUAL SPECIFICATIONS IN VIBRATION TESTING* 

Walter B. Murfin 
Sandia Corporation 

Albuquerque,  New Mexico 

A method of specifying vibration test inputs 
using both force and motion is shown to be su- 
perior to   specification   of   either   input alone. 

INTRODUCTION 

Vibration test levels may be given in two 
ways: by specifying an input motion or by 
specifying an input force. 

Because motion (i.e., acceleration) is the 
quantity most often measured in the field, it 
might seem more logical to specify motion. 
However, such a specification is grossly over- 
conservative. Not only is the system drastically 
overdriven at some frequencies, but the wrong 
frequencies are emphasized. The specification 
of force is more logical, but the attainment of a 
realistic level is attended by great difficuities. 
Force is virtual!? immeasurable under field 
conditions. Also, as shown by Otts [1], force- 
controlled vibration tests require the use of a 
"foundation mass"; realistic choice of this 
mass is generally impossible. 

Many papers have been published suggest- 
ing exotic mechanical impedance methods for 
determining the proper test level. These meth- 
ods are generally completely impracticable and 
are usually ignored. 

DETERMINATION OF FORCE 
FROM MEASURED MOTION 

If it is known that most of the vibration of 
the system results from input forces applied at 
a single, well-defined point, it is possible to 
compute appropriate forces from field-motion 
measurements and a laboratory measurement. 

It is convenient to introduce the concept of 
driving point apparent weight. This is the ratio 

of vibratory input force to vibratory input ac- 
celeration as a function of frequency, i.e., 
*,(.") = [F(")]/[X(o»)], where F is the force in 
pounds, x is the acceleration in g units, and u 
is the circular frequency. 

The apparent weight is then given in pounds. 
Apparent weight is related to mechanical im- 
pedance [2] by a factor of jw, where j = v^T. 
Although apparent weight is actually a complex 
quantity, only the absolute value is required 
here. 

If field vibrations were known at discrete 
frequencies, it would be a simple matter to 
compute the forces, i.e., F'(u>) = wa(w)y(aj), 
where the y are measured field accelerations, 
and the F'(w) are the computed field forces. 

The field vibrations are measured, usually 
over a frequency interval for instance, as given 
by the Vibran [3,4] system. Although a certain 
level is reported for a frequency band, it must 
not be supposed that this vibration is uniform 
over the bandwidth. In fact, it will be obvious 
that if force is uniform over the band, almost 
all the vibration will take place at that frequency 
within the band where the apparent weight is a 
minimum. 

One can choose an "average" value of ap- 
parent weight within a frequency band which is 
strongly biased toward the minimum value. 
Then the_"average" force^within a frequency 
band is F = w,y, where w, is the "average" 
apparent weight. The method of choosing the 
average value is open to debate. The method 
used here is 1. = wmin + o. i (*,„„ - W.ln), 
where w .   and «i      are the minimum and 

*This work was supported by the U.S. Atomic Energy Commission. 
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Fig. I.   Measured field vibration 

HMUtJanun values of the apparent weight within 
the band. 

Kaunpte 

Analysis of many Vlbran records of field 
measurements on a system showed that field 
vibrations were less than the levels shown in 
Fig. 1. Apparent weight of the same system 
was measured in the laboratory; the results 
are shown in Fig. 2. The product of measured 
vibration and average apparent weight is shown 
in Fig. 3. It will be seen that, although both 
field vibration amplitudes and apparent weight 
are fluctuating functions of frequency, the com- 
puted field forces are much smoother functions. 
This result is intuitively satisfying. 

Combined Specifications 

The requirement for foundation mass can 
be obviated by a simple limiting procedure. It 
is known that accelerations measured in the 
field will not exceed the levels shown in Fig. 1. 
It has been computed that force levels will not 
exceed those shown in Fig. 3. It is relatively 
simple to combine this Information into a single 
test. The computed force of Fig. 3 is used as 
an input; however, the input acceleration is 
never allowed to exceed that of Fig. 1. At any 
frequency at which input accelerations would 
tend to exceed this limit, the force is suitably 
reduced so that the limit is not exceeded. It is 
exactly equivalent if acceleration ie the speci- 
fied input, and the force is limited. 

1000 

* 100 

DASHED LINE    BAHO AVERAGE 
APPARENT WEIGHT 

100 
FREQUENCY  (Hj) 

Fig. 2.   Measured apparent weight 

Both the force and vibration envelopes 
shown are rather complex, and it was not known 
that the measured field environment was the 
most severe that could ever be encountered. 
Therefore, for both conservatism and simplic- 
ity, the actual test specifications were as shown 
in Figs. 4 and 5. While this test is conserva- 
tive, it is conservative by design and by a 
known amount. This is certainly preferable 
to the blind conservatism involved in motion 
specification. 
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Fig. 3.    Computed field force« 

The results of this test were as shown In 
Figs. 6 and 7. It will bfe seen that at some fre- 
quency within each Vibran band (shown by heavy 
vertical lines), the annplitudes are as high as 
those shown in Fig. 4, and none are higher. 

known to be very nonlinear, the method is more 
difficult to apply. (However, this is also true of 
the usual equalization procedure.) 

RECOMMENDATIONS 

Random Testing 

While the method is most easily applied to 
swept sinusoidal vibrations, it can also be used 
in random vibration testing. However, real- 
time limiting is very difficult in the random 
test. An alternative would be to shape the input, 
by suitable filters, in a preliminary low-level 
test. This can be done as part of the equaliza- 
tion procedure. It is hoped that the system is 
sufficiently linear to obtain the same shaping in 
the actual high-level test. If the system is 

To improve the method of specifying levels 
for vibration tests, one should have an extensive 
file of input forces computed for a wide variety 
of use and handling conditions. Normally, one 
has an adequate file of measured accelerations. 
In addition, there is a need for apparent weignts 
of the structures on which these accelerations 
were measured, and, as pointed out by Foley [4], 
a rational method of averaging is required. 

The following course of action is recom- 
mended to obtain the file of computed field forces: 

sooo 

noo 

_l      i    i   i  i i ] i i J 1 i   i  i i i 11 
no 

FREQUENCY (Hi) 
KX» 

Fig. 4.    Specified input force 
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1. Design "universal" fixtures which could 
be used to measure apparent weights of many 
systems of the same general type. 

2. Measure the apparent weight of all sys- 
tems for which reliable field vibration data are 
available. 

3. Compute field force inputs. 

4. Compute average and peak force input 
envelopes. 

Such £ program caii be of great value (or all 
future systems. 

CONCLUSIONS 

Vibration tests in which a force input and 
an acceleration limit are specified have many 
advantages over those involving specification of 
either force or motion inputs.  The method is 
feasible arid only requires a knowledge of the 
system apparent weight in addition to the usual 
field data. 
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DISCUSSION 

C. Smith (Bell Aerosystems Co.):  I am a 
bit worried when you say that probably what you 
get in the end does not depend upon the founda- 
tion.  Is it correct that the apparent field forces 
do not, in fact, depend on what the piece of 
equipment is attached to? 

Mr. Murfin:  Yes, but every foundation is 
different. What you want to do is give it the 
peaks that any foundation would give it, not the 
peaks that a particular foundation would give it. 

Mr. Smith: Those peaks themselves are 
going to depend upon the foundation., are they 
not? 

Mr. Murfin:  They are dependent on the 
foundation, but if you want to demonstrate con- 
servatively that the equipment that you are 
testing can survive any environment on any 
foundation, you want to require it to hit all the 
peaks of which it is cs able, not simply those 
which would be transmitted by a {articular 
foundation. 

Mr. Smith: Would not a very low impedance 
foundation be effectively limited to an ability to 
in^jut small forces, but a high impedance foun- 
dation be able to put in high input forces?  I 
still cannot see why you apparently can com- 
pletely disconnect the consideration of the two. 

Mr. Murfin:  Right.   Forget about the foun- 
dation.  You have a force that is being put in 
and whether it is being put in by a foundation or 
a shaker does not matter.  If the equipment be- 
ing iested wants to respond to that force at a 
particular frequency it will.  Do not put it on a 
foundation that may obscure that peak.  Do not 
put it on a foundation that may put in a spurious 
peak that could not reallj be there. 

Mr. Smith:  I still feel the two have to be 
connected. It seemr to me that your system 
dynamics is somehow being considered inde- 
pendently of total dynamics. I feel this Is a 
dangerous move. 

Mr. Murfin: No, on the contrary, it is a 
dangerous move to attempt to measure a foun- 
dation that you can never measure exactly, and 
that will not be the same from day to day, and 
to assume that that foundation is putting the 
forces into the equipment. 

Mr. Smith:  But, if you do know enough 
about the foundation to which the equipment will 
be attached, the test specifications that you 
would like would be different on different 
foundations. 

Mr, Murfin:  They certainly would, but on 
the other hand, what you probably want is a test 
specification valid for an   foundation, is it not? 

Mr. Smith:  I would not be that ambitious. 

Mr. Murfin:  I do not think that if a particu- 
lar one is measured you can say that the equip- 
ment is always going to be en exactly that one. 

Mr. Smith:  I think I am getting my point 
across, nevertheless.  You cannot be satisfied 
without some consideration   f the fov^dation 
dynamics. 

Mr. Murfin:  Believe me, the foundation 
has nothing to do with it.  There is so much 
force that it does not matter what is on the 
other side of the force — it will create the same 
response. 
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SUBSTITUTE ACOUSTIC TESTS 

Terry D. Scharton and Thomai M. Yang 
Bolt, Beranek, and Newman, Inc. 

Van Nuys, California 

Experimental and analytical studies of idealized structuies are p  e- 
sented to illustrate the use of multipoint mechanical excitation as a 
substitute for full-scale acoustic tests of large aerospace structures. 
The development of small vibration test fixtures that simulate the im- 
pedance of aerospace mounting structures is also discussed. 

INTRODUCTION 

In the environmental checkou. of aero- 
space structures, components, and complete 
systems. It is becoming common practice to 
require full-scale prototype acoustical tests. 
These tests are justified by the argument that 
they can uncover effects that may not be seen 
in simplified analyses or less complete low- 
level tests.   The usual approach in full-scale 
acoustical testing is to attempt to simulate the 
excitation by requiring th..t the pressure spec- 
trum over some region of the test items is the 
same as that expected in the service environ- 
ment.  To fulfill this requirement, test facilities 
generating hundreds of kilowatts of acoustical 
power are being built.   Because of the large 
costs of these highly specialized facilities, it 
appears worthwhile to examine the possibility 
of finding u more efficient substitute for full- 
scale acoustical tests.   The results of an early 
study of acoustic and multishaker excitation of 
an electronic component box indicate that the 
concept of substitute acoustic tests deserves 
further attention [1]. 

The possibility of performing realistic 
substitute acoustical tests arises primarily as 
the result of recent advances in our ability to 
predict the vibration response of aerospace 
structures to acoustic and aerodynamic excita- 
tion fields, and recently developed concepts for 
utlllzLig multlmodal vibration test fixtures that 
realistically simulate the Impedance and vibra- 
tion environment of aerospace mounting struc- 
tures In the acoustic freauency range. 

In "Spacecraft Model Experiments" (be- 
low) the results of acoustical and mechanical 

excitation experiments involving a model space- 
craft are presented to illustrate the accuracy 
with which the power that is transferred from 
an acoustic field to a vibrating structure caa be 
analytically predicted, and to investigate the use 
of mechanical shakers to simulate acoustically 
induced power flow.  Tests of a cylindrical 
structure are discussed in "Cylinder Experi- 
ments" (below) to show ihe feasibility of utilizing 
mechanical shakers to simulate the acoustically 
induced vibration environment on aerospace 
structures, such as a spacecraft shroud or the 
skin of a launch vehicle.  "Impedance Simulatioa 
Tests" (below) discusses the development of 
small, multlmodal, vibration tesn fixtures that 
simulate the impedance of typical aerospace 
mounting structures. 

SPACECRAFT MODEL EXPERIMENTS 

One method of performing a substitute 
acoustic test Involves simulation of the power 
flow between an acoustic (or aerodynamic) 
pressure field and the vibrating struotiue. 
Consider, for example, the problem of testing 
a spacecraft that Is excited inflight by the sound 
field Inside the spacecraft shroud.  Assuming 
that the pressure levels inside the shroud are 
known from previous measurements, we can 
calculate the power transferred to the important 
receiving elements of the spacrcraft, such as 
the solar panels, the adapter, etc.   The sub- 
stitute acoustic test can then be performed by 
attaching a number of mechanical shakers to 
these receiving elements, and adjusting the 
power input to the calculated values. 
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f Mwtitut« aeoastlc tests based oa the con- 
cept oi sisalatlftg Input power oiler two advan- 
tages: the pvwer transferred Srom an acoustic 
field to a Tihratiog structure can be calcinated 
quite oesUy and rellabl? [2,3] wM therefore low 
level acoustic tests or sealing techniques are 
bot required to lapkmeat üie concept, and cal- 
culation of the input power does not require a 
knowledge c< the damping U the vibrating struc- 
ture.  However, tests based on the concept of 
sldtulatSng calculated Input power are obviously 
not as accurate as tests based on the concept of 
simulating the measured response. 

A series of tests was conducted utilizing 
the model spacecraft shown in Fig. 1.  In the 
first test, the spacecraft was excited with a 
reverberant sound field wttL octave bands of 
random noise; tac? resulting npace-average ac- 
celeration response of die solar panels, control 
box, and adapter are shown by the solid lines in 
Fig. 2. 

The solar panels and adapter would appear 
to be the most important receivers of acoustic 
power.  As the solar panels are unbaffled, their 
response is governed by mass law and the power 
inp£t can be calculated from Eq. (1), 

4Af (1) 

where A is the punel area, M Is the panel mass, 
is the excitation frequency, »nd <-)'>. is 

the snace-time average mean-square pressure 
in the reverberant field. 

The response of the adapter to the sound 
field is complicated by Its curvature, but the 

input pc wer at frequencies below the ring fre- 
(.aency of 20CC Hs (ths ring frequency of a cyl- 
inder is given by f r = c^/wd, where cl is the 
speed of sound and d is the diameter of the 
cylindrical shell) is £iV£r, by the following 
equation: 

P - 
2nc0'ANlf 

Hv1 r, t 
(2) 

where <.0 is the speed of sound, and Naf Is the 
modal density of acoustically last modes In the 
adapter [4,5]. 

In the second test witL the model spacecraft, 
two mechanical shakers were attached to the 
solar panels and one shaker was attached tu the 
adapter as shown in Fig. 1. AcceJerometers 
mounted at the shaker attachment points were 
used to co.  rol the power Inputs according to 
the values calculated from Eqs. (1) and (2). 

The pow.?r Input to ap infinite plate from a 
mechanical shaker 's given in terms of \he at- 
tachment point acceleration <a2>t by 

2ph2cf 
(3) 

where e is the density, h Is the thickness, and 
cj is the speed of sound in the plate.  In calcu- 
lating, it is assumed that Eq. (3) is valid for the 
solar panels and the adapter (this assumption 
is valid at high frequencies where the vibration 
wavelength is short compared to the structural 
dimensions), and Eq. (3) is cotrblned with Eq. 

9 ShoWr  LoCOf ion» 

in MecKcnicol Test ■Solo< Panel 

Fig.  1.    Simplified view of Ihr moipl »p«irfrrift 
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Fig. 2.    Responses of spacecraft eiementa in acoustical 
and mechanical excitation experiments 

(1) and Eq. (2) to obtain the desired relation- 
ships between acoustic pressure level and 
acceleration level at the attachment points. 

The responses of the model spacecraft 
adapter, control box, and adapter are shown in 
Fig. 2 by the dashed linf ?..  Notice that the re- 
sponses of the solar -mnels and adapter are 
very similar in the acoustic and mechanical 
excitation experiments.   However, the space- 
craft control box response is considerably 
higher in the acoustic excitation experiment 
than in the mechanical excitation experiment, 
indicating that the control box is excited di- 
rectly by the acoustic field rather than by 
mechantcrl coupling with the solar panels or 
the adapter in the acoustic excitation experiment. 

The results of the spacecraft model ex- 
periments indicate that substitute acoustic 
tests based on power input simulation are 
feasible, provided that the shakers can be 
attached directly to each structural element in 
which the response is governed by direct 
acoustic excitation. 

CYLINDER EXPERIMENTS 

For many aerospace structures, an imag- 
inary envelope of external structure can be 

defined that responds directly to the acoustic 
or aerodynamic environment and subsequently 
transmits noise and vibration to the interior 
portions of the system; the shroud of a space- 
craft or the skin of a launch vehicle are typical 
examples.  In these cases, substitute acoustic 
tests can be performed by using mechanical 
shakers to simulate the desired vibration re- 
sponse of the envelope structure.  The actual 
envelope vibration environment can be estimated 
by a combination of analytical methods, empiri- 
cal scaling from existing data, and low-level 
acoustic tests. 

Simulation of envelope response eliminates 
one of the problems associated with acoustic 
testing.  It is well known that acoustical and 
aerodynamic environments with the same meas- 
ured pressure spectra do not generally Induce 
the same vibration response [6,7].   Thus, the 
use of acoustic tests to simulate aerodynamic 
environments can be very misleading if the 
pressure spectrum is simulated.  It is more ap- 
propriate to simulate the response environment. 

One may also question the validity of simu- 
lating the envelope response and ask whether 
the noise radiated by the envelope and the vi- 
bration transmission from the envelope to in- 
ternal structure depends strongly on the nature 
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d th* aourss oaed to excite the envelope vlbra- 
tlos. For «natple, it can be argued that be- 
caase of the wavelength matching cd. the exciting 
and radiated acooatic waves, in certain tre- 
qoency nusget a etructure excited acoustically 
will radiate sound rsore efticlently than a 
structure excited mechanically. 

To investigate the validity of simulating 
envelope vibration response two series of 
experiments have been conducted with the 
sealed cylindrical structure shown in Fig. 3. 
In the first series, the noise radiated from the 
hollow cyMnder to the interior acoustic field 
in acoustical and mechanical excitation tests 
was investigated; in the second series, we in- 
vestigated the vibration transmitted from the 
cyltader to the instrument box attached tc the 
cylinder was investigated.  The sealed cylinder 
was placed in a reverberant sound field in the 
acoustic excitation tests, as shown in Fig. 3(a), 
and in the mechanical excitation tests two 
shakers were attached to the cylinder as shown 
in Fig. 3(b).  la both the acoustic and mechani- 
cal excitation tests, the octave-band, random- 
noise excitation level was adjusted to establish 
a space-time average mean-square acceleration 
of 1 g on the cylinder. 

The results of the first series of tests are 
given in Fig. 4, which shows the Interior acous- 
tic pressure levels for a given cylinder accel- 
eration level in both acoustic and mechanical 

excitation tests.  Tests were conducted both 
with and without an acoustic liner Inside the 
cylinder.  The measured internal loss factor of 
the interior acoustic space was T», » 2 x lO*J 

with the liner and T, « 2 x 10 3 without the 
liner.  The data obtained, both with and without 
the liner, indicate that the interior acoustic 
pressure levels are approximately 3 db higher 
in the acoustic excitation tests than in the me- 
chanical excitation tests. 

The ratio of the interior acoustic pressure 
levels to the cylinder vibration levels can be 
cudzr-'i&tsii utilizing statistical energy analysis 
tec^&tques [3]. At frequencies below the ring 
frequency (f t « 4000 Hz for the test cylinder), 
the acoustic radiation is governed by resonant 
vibration modes of the cylinder, and the calcu- 
lated pressure-acceleration ratio is the same 
for acoustic and mechanical excitation.  For 
frequercieä less than 4000 Hz, the pressure- 
acceleration ratio is given by 

l    l 
(*T)3V0    f1   ^i V N (4) 

where pa is the acoustic density, c0 the acous- 
tic speed of sound, v0 the acoustic volume, and 
T), the internal loss factor of the Interior acous- 
tic space, A the cylinder interior surface area, 
and (N(,,/N) the ratio of modal density of acous- 
tically fast cylinder vibration modes to the total 
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Fig.  3.     Acouitic and mechanical tests on cylinder 
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Fig.  4.    Sound   pressures   generated   inside a 
cylinder excited acoustically and mechanically 

modal density of the cylinder [4].  The values of 
the pressure-acceleration ratio calculated from 
Eq. (4) are also shown in Fig. 4.  The calculated 
values agree reasonably well with the values 
measured in acoustic and mechanical excitation 
experiments and predict measured 10-db differ- 
ence in the interior acoustic levels with and 
without the liner. 

The calculated ratio for the 8000-Hz octave 
band is obtained by considering radiation from 
the acoustically slow resonant vibration modes. 
That the measured Interior pressure levels 
exceed the calculated levels in the 8000-Hz band 
indicates that above the ring frequency (but 
below the colnctdence frequency) the nonresonant 
cylinder vlbratl'■  -nodes govern the radiation. 
The sound ra-iiated by the nonresonant cylinder 
motion dependä ja the details of the excitation; 
however, preliminary calculations Indicate that 
the sound radiated Is approximately the same 
for reverbera. 1 acoustic excitation and point 
mpchanlcai excitation.   Above the acoustic 
coincidence frequency (fc - /T c0

3'77c?h   where 
h is the cylinder thickness) of 16,000 Hz for 
the test cylinder, theoretical and experimental 
results Indicate that the resonant cylinder mo- 
tion again governs the radiation and the details 
of the excitation are not important. 

The results of the second series of experi- 
ments (see Fig. 5) show that the acceleration 
transfer function from the cylinder to an In- 
strument box, attached to the cylinder with 
four studs  Is essentially the same In acoustic 
and mechanical excitation tests.  The accelera- 
tion transfer function (defirsd as the ratio of 
the space-time mean-square cylinder accelera- 
tion to the space-time mean-square box accel- 
eration) can also be calculated [8] using the 
following statistical energy analysis techniques: 

fa      t , i 

fh K f / r,bc   f   ^b 
(5) 

where the subscript b Indicates the box and c 
the cylinder, T;b is the measured Internal loss 
factor of the box, and T)bc is the coupling loss 
factor from the box to the cylinder given by [B] 

»e(Zc) 

"f«b il^cZb'l2 
(6) 

where Zc Is the point force impedance of the 
cylinder,  zb Is the point force Impedance of the 
box  and Mb Is the mass of the box.  In our 
eva' iatlon of Eq. (6), we have used the 
equivalent Infinite plate impedances given by 
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Fig. 5.   Mechanical transfer function from a cylinder to instrument box 

Z =  4ph2cf vT (7) 

The calculated values of the acceleration 
transfer function are also shown in Fig. 5. 
They agree very well with the values measured 
in the acoustic and mechanical excitation tests, 
except in the 1000-Hz octave band. 

The results of these tests indicate that 
substitute acoustic testing based on simulating 
the vibration response of envelope structure 
gives realistic results for the noise radiated 
to the interior and for the vibration transmitted 
to skin-mounted equipment.  In the case of large 
launch vehicles or spacecraft, however, it may 
be very costly and difficult to perform substi- 
tute acoustic tests using a large envelope sec- 
tion of structure; so we turn now to the problem 
of developing small vibration test fixtures for 
performing substitute acoustic tests of skin- 
mounted components. 

IMPEDANCE SIMULATION TESTS 

Acoustic testing has been advocated as a 
means of overcoming the problems associated 
with conventional vibration test fixtures in the 
high-frequency range [9].  In conventional 
vibration tests of large components, fixture 

resonances inevitably occur within the frequency 
range of interest.  These fixture resonances 
frustrate excitation and control problems and 
often render the high-frequency vibration data 
essentially useless.  In addition, the use of rigid 
test fixtures often results in severe overtesting 
of instrument packages which in practice are 
attached to lightweight, acoustically susceptible 
structures and are subjected to a structurally 
reverberant vibration environment. 

To avoid the problems associated with con- 
ventional vibration test fixtures and the ineffi- 
ciencies associated with large-scale acoustic 
and multishaker testing, we are currently in- 
vestigating the concept of utilizing light, flexi- 
ble, multlir.odal vibration test fixtures that 
closely simulate the impedance of typical aero- 
space mounting configurations [10,11].   These 
fixtures have many resonances in any specific 
measurement bandwidth and result in a rever- 
berant vibration field which is quite uniform 
over the fixture. 

Theoretical considerations indicate that if 
the point impedance of the fixture simulates the 
point impedance of an actual mounting struc- 
ture, then a vallstic substitute acoustic test 
can be perforn.trl by using a number of small 
shakers to estaslith the inflight reverberant 
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Vibration environment or. the fixture. That is, 
if the space- average vibration of the fixture is 
adjusted to the space-average vibration level of 
a flight mounting structure, then the power flow 
into any test component attached to the fixture 
will be the same as the power flow under inflight 
conditions. 

The technique for simulating the impedance 
of multimocbl rr.ounting structures, such as a 
spacecraft shroud or a vehicle skin, is illus- 
trated in Fig. 6 which qualitatively shows the 
force admittance (reciprocal of impedance) of a 
finite plate.  The real part of the admittance 
fluctuates with a peak-to-valley amplitude given 
by l/M^rj where M is the mass of the plate and -q 
is the damping loss factor.  The average fre- 
quency separation between peaks is given by 
tie modal separation i(^) = IMIC^ATA where h 
is the plate thickness and A is the plate area. 
The spatial, frequency average of the real part 
of the admittance is equal to the admittance of 
an equivalent infinite plate, Y0, and is given by 
the reciprocal of the right-hand side of Eq. (7), 
and the spatial, frequency average of the imagi- 
nary part of the admittance is equal to zero. 
Thus the admittance of a finite plate is quali- 
tatively described by the peak-to-valley ampli- 
tude, the modal separation, and the equivalent 
infinite plate admittance. 

To illustrate the simulation of impedance, 
we have developed a small ■nultimodal plate 

(see Fig. 7) which simulates the impedance of a 
large plate. The plate shown in Fig. 7 is 6-ln. 
aquare with 1-in. diameter colls of wire mesh 
attached to each edge. This small plate is de- 
signed to simulate the impedance of a 27- by 
46-in. plate of the same thickness. 

We have performed a series of experi- 
ments to evaluate the impedance simulation 
technique. In the first experiment, a 27- by 
46-in. aluminum plate of 1/16-in. thickness 
was subjected to sine-sweep excitation of 20 to 
20,000 Kz. The acceleration response meas- 
ured approximately 2 in. from the shaker 
attachment point is shown in Fig. 8(a).  The 
response shows approximately 80 resonance 
peaks below 1000 Hz, which agrees quite well 
with the theoretical modal separation of 10 Hz. 

In the second experiment, the sine-sweep 
test was repeated for a small 6- by 6-in. plate 
that was cut from the original plate, and the 
results are shown in Fig. 8(b).  The modal 
separation of the small plate (approximately 
one mode every 250 Hz, which is again quite 
close to the theoretical value of 300 Hz) is 
much less than the modal density of the large 
plate.  The peak-to-valley amplitude of the re- 
sponse is also larger than for the large plate. 

In the third experiment, the sine-sweep 
test was repeated for the 6- by 6-in. plate, 
modified as shown in Fig. 7, and the results 

Yen [   Frequ 

?  5 

Frequ«-'c/ 

Fig. 6.    Point force admittance of a finite plate 
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Fig. 7.   Modification of a small plate 
to simulate a large plate  impedance 

Impedance of a large aerospace mounting 
structure. 

CONCLUSIONS 

We have conducted a number of experi- 
ments and performed analyses to investigate 
the feasibility of using multishaker mechanical 
excitation tests as a substitute for high-level 
acoustic tests. The results of the investigation 
indicate that: 

1. The power input from an acoustic field 
to an aerospace structure can be calculated and 
simulated with reasonable accuracy by attach- 
ing small shakers to each structural element 
that receives significant power from the acous- 
tic fit Id. 

are shown in Fig. 8(c). The modal separation 
and peak-to-valley amplitude of the modified 
6- by 6-'.n. plate are very similar to those for 
the 27- by 46-in. plate. As the thickness and 
speed of sound in the modified plate are identi- 
cal to the large plate parameters, the infinite 
plate impedances given by Eq. (7) are the same 
for each plate. It therefore follows that the 
point force impedance of the modified plate 
qualitatively simulates the point force imped- 
ance of the large plate.  This example illus- 
trates that in the high-frequency regime, small 
fixtures can be designed to simulate the point 

2. If an acoustically induced vibration en- 
vironment on envelope structures, such as a 
spacecraft shroud or a vehicle skin, is simu- 
lated with small shakers, the acoustic radiation 
and the vibration transmission associated with 
the envelope structure will also be adequately 
simulated. 

3. Small multimodal fixtures for perform- 
ing vibration tests of aerospace components 
can be designed to simulate accurately the high- 
frequency impedance and vibration character- 
istics of large vehicle sections. 

nil lilk! 
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Fig. 8(a).   Sine-sweep response of a 27- 
by 46- by 1/16-in. aluminum plate 
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Fig. 8(b).    Sine-sweep response of a 
6- by 6- by  1/16-in. aluminum plate 
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Fig. 8(c)     Sine-sweep response of the 6- by 6- by 1/16-iii. plate 
with boundary attachments to enrich modes 
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SIMPLIFIED METHOD Of CALCULATING 

NATURAL FREQUENCIES AND NORMAL 

MODES OF VIBRATION FOR SHIPS 

Hassan B. AU and Herbert F. Alma 
Naval Ship Research and Development Center 

Washington, D.C. 

Methods currently used at the Naval Ship Research and Development Center 
(NSRDC) to calculate the natural frequencies and normal modes of vibration of 
ships use a lumped parameter approach based on a nonuniform free-free beam 
theory.   The nonunifoim beam theory considers elastic flexural and longitudinal 
deformationE, including shear and torsion.   Coupling between either vertical or 
alhwartship flexural modes and torsional modes is also considered.   The ship is 
divided into 20 sections of equal length.   The total mass of a jection is considered 
a point mass concentrated at the center of the section.   The elastic properties are 
assigned to massless elastic members joining these mass points. 

The evaluation of parameters requires not only time consuming calculations but 
also detailed ship section plans.   The latter means that the ship is already in a 
stage of development where the results of the calculation of natural frequencies, 
normal modes, and vibration levels are of limited use to the designer.   If the dy- 
namic characteristics of the ship could be presented to the Naval Architect in the 
conceptual preliminary design stage, this would constitute a significant guide, as it 
would enable the designer to modify his design, if necessary. 

With these coiisiderations in mind, a     .nplified method was investigated.   Using 
parameters calculated for only the center and quarter sections of the ship, curves 
were drawn over the whole ship length through these hull points, in a reasonable 
way, based on curves obtained from detailed calculations for a similar ship.   The 
mass anJ stiffness parameters for the remaining 17 sections were obtained using 
values from the resulting curves. 

The method was applied to a destroyer for vertical and horizontal vibration. 
Curves and tables are shown for the values obtained from the detailed and simpli- 
fied tnethoas.   The results of the simplified method compare favorably with those 
of the conventional detailed method, the average percentage error in the calculated 
frequencies being  3.5 percent. 

It is planned to ch^ck the accuracy of a more simplified method, namely, using only 
the center section parameters, and apply it to several ships for which detailed cal- 
culatiors and measurements are available. 

INTRODUCTION 

The ability to predict the dynamic response 
and the vibration characteristics of a ship's 
hull is an important input for the designer.  It 
w*ll enable him to prevent failure or malfunc- 
tion of delicate instruments and to evaluate 

vibration levels of «Mpboard machinery and 
equipment owing to resonance of a forcing fre- 
quencv with a natural frequency of the hull. 
Calculations of hull vibration characteristics 
have therefore been requested for a consider- 
able time during the construction of new ship 
classes. 
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MATHEMATICAL MODEL USED FOR 
PARAMETER CALCULATIONS 

A frM-fre« beam provides a basis for an 
understanding o( the essential vibratory char- 
acteristics of a ship's hull at low frequencies. 
Calculations of lateral hull vibrations are, 
therefore, based on the Timoshenko equation 
for the free lateral vibration of a prismatic 
bar[l]; 

The number of stations used in calculations 
by different authors varies. NSRDC uses 20 
equally spaced sections. 

The parameters used for each section are 
obtained from tedious hand calculations requir- 
ing detailed ship sr.ctlon drawings that give 
weight disti-ibution, inertia sections, body plans, 
lines, and molded offsets. 

3x«        - 3xl 3t1 
+  M 

at1 

EI 
KAC^ dx1 at' 

A 

The differential equation for torsional vi- 
brations about the longitudinal axis is 

rT a2*    T    3V 
3t! 

where 

El s bending rigidity 

1^, * rotary inertia 

fi s mass per unit length 

KAG « shear rigidity 

y = lateral deflection 

x = distance from one end 

t = time 

QJ z torsional rigidity 

4> = single amplitude in rotation about 
the longitudinal axis. 

The coefficients expressed in these equa- 
tions vary over the hull length, and cannot be 
expressed as continuous functions.  Therefore, 
a numerical method must be applied, using 
finite-difference equations.   For this purpose 
the ship is divided into a number of sections, 
the ends of which are called stations.  For each 
section the mass is calculated and assumed to 
be lumped in the center of the section, which is 
called the half station. Shear, bending, and 
torsional stiffnesses are then calculated for 
each section.  The finite difference method, 
with special c^u»tions for end conditions, is 
described in Ref. 2. 

SIMPLIFIED METHOD OF 
PARAMETER CALCULATIONS 

Calculations of parameter values for 20 
stations is cumbersome and time consuming. 
Moreover, some of the required data are only 
available at a time when the ship design is al- 
ready in a final stage of development, and are 
therefore only of limited value. Clearly, it 
would be preferable if the dynamic character- 
istics of the ship could be presented to the de- 
signer in the preliminary design stage. This 
would enable him to modify his design, if 
necessary. 

With this consideration in mind, a simpli- 
fied method was investigated. The parameters 
derived for digital computation of natural fre- 
quencies and mode shapes were calculated only 
for the center and the two quarter sections of 
the ship, for which early design plans arc gen- 
erally available. The three points are then 
connected by straight lines, the slopes being 
adjusted at the end sections to correspond to 
curves obtained for the respective parameters 
of similar ships. The parameters of the other 
17 stations, or half stations, are scaled from 
these curves to obtain all parameters needed 
for a 20-mass system. 

This simplified method was applied to a 
ship for which detailed calculations and meas- 
urements were available. 

CONCLUSIONS 

The motion equations of the hull, on which 
computations are based, and the parameters 
required for each station are as follows. 

EI d4y d'y 
*" dx3 dt2 

dfy 
dt2 

1^      dV 
ICACU dt4 

UE: 

KAG 
d4y 

dx' dt' 
(a) 
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GJ 
dxs 

dV 
dt! 

= o (b) 

where 

El = bending rigidity of the hull 

l^, = rotary inertia of the hull per unit 
length 

u = mass per unit length 

KAG = shear rigidity of the hull 

GJ  = torsional rigidity of the hull 

4> = single amplitude in rotation about 
the longitudinal axis 

I,,, = mass moment of inertia of the hull 
per unit length about the longitudinal 
axis. 

Figure 1 shows distribution of the weights 
and the total masses (including the so-called 
virtual mass of the surrounding water). The 
three calculated points are marked with circles, 
and the assumed distribution is shown in dotted 
curves. 

Figure 2 shows the two curves for the 
moment of '.nertia distribution about the vertical 
and horizontal axes, and Fig. 3 shows the shear 
area curves for vertical and horizontal vibra- 
tion parameters. 

Despite differences in mass and stiffness 
parameters, results of the simplified method 
compare favorably with those of the conventional 
method, as well as with measurements. 

Fipure 4 shows the small differences in 
mode shapes and frequencies obtained for the 
first fcur vertical modes. Differences for hori- 
zontal vibration calculations, not shown, are 
similarly small. 

Table 1 is a tabulation of measured verti- 
cal natural frequencies and values obtained 
from detailed and simplified calculations. This 
shows that the simplified method may be con- 
fidently employed in the preliminary design 
stage. 

TABLE 1 
Measured and Calculated 
Vertical Hull Resonances 

Mode Measured 
Calculated 

Detailed Simplified 

First 1.3 1.35 1.3 

Second 3.0 2.88 2.82 

Third 4.6 4.72 4.53 

Fourth 6.5 6.71 6.5 

Fifth 8.2 8.50 8.35 

Studies are In progress to determine 
whether the method can be further simplified 
by calculating the center section parameters 
only and fairing the parameter curve to one of 
similar ship dimensions. 

Further details. Including finurcs and 
tables for horizontal vibration calculations, can 
be found in Rcf. 3. 
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DISCUSSION 

M. Pakstys (General Dynamics/Electric 
Boat):  I noticed that your comparison between 
the experimental and the simplified method was 
better than that between the experimental and 
the full method.   How do you explain that ? 

Mr. Ali: I cantiot offer a scientific answer 
and I doubt if there is any significanc to it. It 
is probably just a coincidence 
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..   .-J.V.:!WE 

J. Weber (General Dynamlcs/Convair): 
How can you measure the natural frequencies 
of a ships hull? 

Mr. All: It is standard procedure.  Nor- 
mally, we perform a spectral analysis of re- 
corded data from accelerometers, and from 
this we get the various frequencies. This has 
been done for several years, I understand. 

Mr. Smith (Bell Aerosystems Co.):  What 
sort of fundamental propeller frequency are you 
talking about, and what order of harmonics are 
you trying to avoid? I noticed your fourth fre- 
quency was about 6 Hz.  Obviously, your luck 
runs out when the approximations to the mass 
and stiffness distributions are inadequate to 
calculate modes of an order sufficiently high to 
be within the order of propeller harmonics that 
you are trying to avoid. Could you relate pro- 
peller harmonics and their frequencies to the 

modal number that you would have to know to 
avoid coincidence with these frequencies ? 

Mr. All:  Anything beyond the fourth mode 
is of academic interest only. We are not par- 
ticularly interested In the higher harmonics 
because we cannot measure them.  Essentially, 
if thi' method is accurate for the first three or 
four modes, we are quite happy. 

Mr. Noonan (NSRDC):  The principal fre- 
quencies with which we would be concerned 
would be the fundamental blade frequencies and, 
on occasion, the shaft frequency.  A particular 
example of difficulties along this line was the 
earlier class of destroyers that had a fundamen- 
tal torsional mode of the hull at approximately 
300 rpm of the shaft, and that was excited by 
unbalance in the propulsion system. No matter 
how much effort went into attempts to balance 
that, it was virtually impossible to have a vehi- 
cle which was satisfacton" to the ship because 
that particular mode was so sensitive. 
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RESPONSE SPECTRA FOR SWEEPING 

SINUSOiDAL EXCITATtONS 

Donald L. Cronin 
TRW Systems  Group 

Redondo Beach,  California 

The amplification spectrum for a laboratory sinusoidal sweep test is 
often described as flat, with an amplitude equal to 0> the system quality 
factor,    This description fails to account for two factors:   (a) there is 
attenuation of system peak response as a consequence of sweeping, and 
(b) the spectrum approaches flatness only between the lower-frequency 
limit and upper-freque   cy limit of the sweep. 

In this paper an approximate analytical description is derived for the 
amplification spectrum of a sweeping sinusoidal excitation which takes 
into account peak attenuation owing to sweeping and response outside 
the range of the sweep.    The dependence of the spectrum upon sweep 
rate and system damping is discussed, and the results are extended to 
sinusoidal sweep tests wherein input acceleration levels are varied in 
discrete steps during the course of the test. 

INTRODUCTION 

Many environmental tests employ a slowly 
sweeping sinusoidal excitation.  In these tests 
the excitation is started at some prescribed 
lower-frequency limit and is increased to some 
prescribed higher-frequency limit.  The exci- 
tation frequency during testing depends expo- 
nentially on time, and the characteristic sweep 
parameter is the octave sweep rate, or the rate 
at which the excitation frequency is doubled. 
The tests generally consist of a collection of 
discrete frequency domains wherein the level 
of the excitation is controlled to provide shaker 
motion that has constant amplitude for displace- 
ment, velocity, or acceleration.  Tests finding 
wide application consist, for the most part, of 
one or more constant acceleration domains. 
Tests falling into this category are discussed 
in the following paragraphs. 

amplification spectrum for a constant acceler- 
ation sweeping excitation is generally described 
as being flat, with an amplitude equal to Q. 
The spectrum for an undamped system is usu- 
ally not defined. 

This simplified view of the response spec- 
trum fails to take into account two factors. 

1. There is attenuation if system peak re- 
sponse, i.e., full resonant response is not al- 
ways reached in testing owing to the effect of 
sweeping. 

2, Relative flatness describes the spectrum 
only over the range of the sweep, i.e., only be- 
tween the lower-frequency limit and upper- 
frequency limit of the sweep.  It provides no 
information on the responses of systems having 
resonances outside the range of the sweep. 

A convenient tool for visualizing the effect 
of an excitation is the response spectrum —a 
plot of the maximum response of a simple lin- 
ear oscillator to the excitation in question as a 
function of oscillator frequency. An accelera- 
tion response spectrum or, more simply, an 

These two factors are discussed and ana- 
lyzed separately in this paper.   Results of anal- 
ysis are then combined to provide a potentially 
useful and more accurate description, than 
heretofore available, of system res »nse to 
sweeping excitations. 
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NOMENCLATURE 

A     Amplification - ratio of response 
acceleration to input acceleration 

■aas     Maximum oscillator acceleration 

B,     Input acceleration levels (i & 1,2,3) 

F     Frequency as it pertains to the 
input (hertz) 

F     Time rate of change of input fre- 
quency (Hz/sec) 

f     Frequency as it pertainb to the 
oscillator (hertz) 

Q     Quality factor (Q = l/ac) 

ß    Octave sweep rate (octaves per 
minute) 

i     Fraction of critical damping 

17     Sweep parameter 

r     Time required for excitation fre- 
quency to double (T =  1//3). 

PEAK ATTENUATION 

It has been widely recognized that peak re- 
sponse during a sine sweep test may be attenu- 
ated because the excitation, in passing through 

resonance, provides the system with insufficient 
time to reach steady-state response. Analyses 
of this effect [1-3] have lacked generality owing 
to the fact that peak attenuation depends on 
several variables. These variables include 
system frequency, system damping, the rate of 
sweeping, and the method of sweeping, e.g., 
excitation frequency depending linearly on time, 
excitation frequency depending exponentially on 
time, etc. 

During a recent study [4] consisting of 
analysis and analog computation, it was discov- 
ered that, to a good order of approximation, 
peak attenuation does not depend on the manner 
in which the sweeping takes place, nor on the 
direction of sweeping, i.e., on whether the ex- 
citation frequency increases or decreases in 
time. It was discovered, moreover, that peak 
attenuation, again to a good order of approxi- 
mation, depends upon a single parameter which 
combines system damping, system natural fre- 
quency, and the absolute value of the time rate 
of change off excitation frequency as the excita- 
tion passes through system resonance: 

02iF| (1) 

Figure 1, adapted from Ref. 4, illustrates 
the fractional reduction of peak response as a 
function of the parameter v. 

A fairly simple function may be fitted to 
the curve of Fig. 1 to provide a reasonable de- 
scription of peak attenuation owing to sweeping: 

Fig, 1. Fraction of steady-etate response 
attained by a mechanical oscillator as a 
function of the sweep parameter   n 
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1 -  exp (-2.86T,-
0
  

44$) (2) 

As resonant response produces an amplifi- 
cation of Q, the system quality factor, the am- 
plification produced by a sine sweep test will 
be given by 

A % QG 

A * Q 1 - exp(-2.86 rf0  MS) 
(3) 

When the excitation frequency depends ex- 
ponentially on time, that is, when the sweep is 
logarithmic, the sweep parameter, T,, may be 
written in terms of the octave sweep rate.  For 
logarithmic sweeping, the frequency at any time 
is given by 

F = F0 e01 , (4) 

and the time, T , required for the frequency to 
double is obtained as follows: 

F, =  F0 e    ' 

F2 --   2F, =  F0 e 
it,*r) 

2 --  e 

Thus r =  [(in 2)/a]( and the octave sweep rate 
is/3 = (1/T) = [o/(in2)] .   The frequency-time 
relation may then be written 

F =  F.  exp (/? In 2t/60) (5) 

wherein the octave sweep rate is given in oc- 
taves per minute and time is expressed in 
seconds.  The time rate of change of excitation 
frequency is then 

F = ^-^ Fo e»P <^ ln 2t/60) 60 

60 

(6) 

When the excitation passes through system 
resonance, excitation frequency K becomes 
equal to resonant frequency f.   The time rate 
of change of excitation frequency during the 
passage through system resonance is then 

In 2 

"60" 
Q2\ß\ 

(8) 

When Eq. (B) Is substituted into Eq. (3), an 
approximate analytical expression is proceed 
for the amplification spectrum of a con8ta.it 
acceleration, logarithmic sine sweep test: 

A % Q ■ 1 - exp -20 75 m «. 44S 
(») 

This expression is approximate because of 
its empirical origin and because it ignores the 
effects of starting transients on the spectrum, 
although starting transients will not be a par- 
ticularly significant matter in a test involving 
several thousand stress reversals. Equation (9) 
also constitutes an incomplete picture of the 
requisite amplification spectrum, in that it de- 
scribe s response behavior only for systems 
having resonances within the range of the sweep, 
i.e., for the frequency range between the lower- 
frequency limit of the sweep and upper- 
frequency limit of the sweep. Response outside 
the range of the sweep will be discussed in the 
next section. 

In Fig. 2 the dependence of the amplifica- 
tion spectrum upon octave sweep ra'e is illus- 
trated for a Q of 25.  It is seen, for example, 
that for a sweep ranging from 5 to 1000 Hz at 
Aß, i. system having a resonance at 10 Hz will 
respond to a level of about 20 times the input 
level, or to about 80 percent of full resonant 
response. 

In Fig. 3, the dependence of amplification 
spectrum on system damping is illustrated in a 
normalized plot for a sweep rate at iß. 

The spectrum for an undamped system will 
always be defined for nonzero sweep rates, as 
an undamped system requires an infinite time 
to build up to an unbounded response.  For slow 
sweep rates, Lewis [5] noted that undamped 
system response may be approximated (in the 
present notation) by 

A ^ 3 
ViFl 

(10) 

(7) 
which, for logarithmic sweeping, may be 
written 

Substitution of Eq. (7) into Eq. (1) produces 
the sweep parameter germane to logarithmic 
sweep testing: A % 34.1   i/i—i 

\ß\ 
(ID 
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Fig. 2.   Amplification spectra for »everal 
sweep rates and for a Q of 25 

RESPONSE OUTSIDE THE 
SWEEP RANGE 

To complete the definition of the response 
spectrum, it is necessary to describe how sys- 
tems having resonances outside the range of 
the sweep respond, e.g., how a system having a 
5-Hz resonance responds to an excitation 
sweeping from 10 Hz to 1000 Hz at 4 0. 

If peak attenuation owing to sweeping Is 
Ignored momentarily, the amplification for a 
system having a resonance lower than the 
lower-frequency limit of the sweep will be ap- 
proKlmated by 

A *       
f3 

\F^) ,      f'F« (12) 

where f is the system rescnryrt frequency and 
where F, is the lower-frequency limit of the 
sweep. 

The amplification for a system having a 
resonance higher than the higher-frequency 
limit of the sweep will be approximately 

A % 

f1 
F/ 

(13) 

where F2 is the upper-frequency limit of the 
sweep. 

The application of Eqs. (12) and (13) to the 
present situation may be justified by physical 
argument. If, for example, the sweeping exci- 
tation is initiated at some low frequency, F,, a 
system having a resonance at f < F, will re- 
spond to a level approximating the steady-state 
response level for a sinusoidal input having a 
frequency F, (given by Eq. (12)).  As the sweep 
progresses up the frequency scale, the response 
of the system having a natural frequency, f, 
will become smaller and smaller.  The initial 

i   i i i inii      i   i i i iiiii      i   i ii nil 

miiuu (ii I 

Fig. 3.   Amplification spectra for several 
values of Q and for  a sweep rate of 4/3 
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level will then envelope all subsequent response 
peaks. Equation (12) therefore approximates 
the maximum response of the given oscillator 
to the specified input. 

If, on the other hand, a system having a 
resonance at f > F2 is influenced by the same 
sweeping excitation, the response will grow 
larger and larger as the sweep progresses up 
the frequency scale. The terminal value of the 
response (approximated by Eq. (13)) will envel- 
ope all previous response peaks and thus will 
be the maximum response for this oscillator. 
If peak reduction owing to sweeping is ignored, 
the amplification spectrum for the entire fre- 
quency range will appear as sketched in Fig. 4. 

Fig. 4.    Amplification spectrum for 
a  constant acceleration  sweep  test 

The notion of these approximations may be 
applied to tests made up of a collection of fre- 
quency domains wherein the level of the excita- 
tion is held at one or another constant accelera- 
tion level. 

The test may be considered to be the sum 
of three constituent tests, each having an am- 
plification spectrum as shown in Fig. 4. Maxi- 
mum response vs frequency for each test may 
be plotted on a common set of axes (see Fig. 5). 

Fig. 5.    Common plot for maximum resprnse 
to constituent tests listed in Table 1 

The maximum response plot for the entire 
test will, by definition, envelope the three con- 
stituent tests (see Fig. 6). 

i      / V 

M V 
f-t, 

An example of this type of test is listed in 
Table 1. 

Fig. 6.   Maximum response Tcr 
test described in Table 1 

TABLE 1 
Representative Multilevel Test 

Range Level 

f < F, 0 

F, 1 f < f, B, 

F, 1 f < F3 B3 

F3 1 f < F, B3 

F4 <  f 0 

B, < B, < B3 

In Fig. 6, the description of the maximum 
response plot is defined in terms of input levels 
multiplying Q or Eqs. (12) and (13). 

CONCLUSIONS 

In view of the work presented, approximate 
expressions may be formulated to describe re- 
spon i spectra for constant acceleration 
sweeping sinusoidal tests.  These expressions 
will take into account peak reduction owing to 
sweeping and response of systems having reso- 
nances outside the range of the sweep. 
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TABLE 2 
Analytic Deicrlption of Maximum Response 

Plot Shawn In Figs. 5 and 6 

Range Applicable Equation 

f < r, B, x Eq. (12) 

F. < f < F, the greater of 8,0 and 
Bj x Eq. (12) with F, = F, 

M f < F, the greater of 6,0 and 
B, x Eq. (12) with F, = F3 

F, < f < F4 B,«Q 

M' B, x Eq. (13) wltli Fj - F4 

For a simple test embodying one accelera- 
tion level, the amplification spectrum for fre- 
quencies within the range of the sweep wi'l be 
given by Eq. (9). 

For frequencies lower than the lower- 
frequency limit of the sweep, the amplification 
spectrum may be approximated by combining 
Eqs. (8) and (12). 

f» n- exp [-20 751—I 

vF7^) J      f'F.2 

♦    

For frequencies higher than the upper- 
frequency limit of the sweep, the amplification 
spectrum may be approximated by combining 
Eqs. (9) and (13), i.e., 

A % 

.-..[.».. (« -0    44J 

JFW7 f'F,' 
(13a) 

The generalization to a plot of maximum 
oscillator response vs frequency for tents em- 
bodying several constant acceleration levels 
proceeds from the work presented in the last 

section with Eq. (9) replacing Q, and Eqs. (12a) 
and (13a) replacing (12) and (13) in Table 1. 

A parenthetical statement regarding Fig. 5 
may be of interest here. When a sine sweep 
test Siis step changes in level, certain systems 
are excited to high levels at their resonant fre- 
quency, and are also excited to high levels at 
some frequency other than resonance.  An ex- 
ample may be cited usinsr the Atlas Agena 
spacecraft flight accepw.ce test (Y-Y) found in 
Table XX of Ref. 6. The test includes a 2-g 
input sweeping from 250 to 400 Hz, and a 5-g 
input sweeping from 400 to 2000 Hz.  A system 
having a resonance at 375 Hz and Q of 10 will 
be tested to approximately 20g by the 2-g input. 
According to Eq. (12), this system will be tested 
to about 28 g by the 5-g input sweeping up from 
400 Hz.  Figure 7 Illustrates the amplitude ef 
response for this system. 

frM.(lh.) 

Fig. 7.   Amplitude of response plot 
for a 375-Hz oscillator 

It is seen in Figs. 5 and 7, that one portion 
of such a test may produce response levels 
which envelope resonant response levels pro- 
duced by another portion of the test. 
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DISCUSSION 

Mr. Smith (Bell Aeroflystems Co.): We got 
tangled on this sweep rate problem quite a num- 
ber of years ago. I would like to bring to your 
attention a couple of papers that we found did 
not agree with the Lewis reference that you 
quoted. We looked into these, because we were 
not happy with Lewis's results.  One was by a 
fellow named Hok — I think it was in the Journal 
of Applied Mathematics in 1948 — and Reed had 
an article in the Journal of Aerospace Sciences, 
in about 1959.  For some time we have been 
using a little nomograph which relates permis- 
sible sweep rate to system natural frequency 
and system damping. I have never yet found a 
case where we had a problem with the normal 
sort of test specification for bands per octave 
per minute sweep rate. We felt that what Hok 
had done was not in agreement with what Lewis 
had done, and we felt that Hok's work was more 
nearly correct. 

Mr. Cronin:  It is hard to criticize Lewis. 
His work predated the digital computer.  He 
performed an analysis that he Integrated nu- 
merically.  I find it difficult to believe that he 
would make a mistake. Perhaps the format was 
not acceptable to you. 

Mr. Smith: Hok's work also pretty much 
predated computers. He actually solved the 
response of a system. His results are in terms 
of Fresnel functions. Then he carried out an 
analog experiment on a simple electrical oscil- 
lator in which he swept the frequency. He com- 
pared his theoretical and experimental results 
and got extremely good agreement. 

Mr. Cronin:  The results I have presented 
here today have been checked against many ot'er 
results.  The one equation I gave for the fraction 
of maximum response obtained can be used to 
cvalua'; a sweep test to determine if it is, in- 
deed, acceptable. Just pick the lowest important 
frequency and the lowest damping ratio or the 
highest Q and plug it in. If you get something 
less than 99 percent or 95 percent you know the 
sweep rate, or whatever your criterion might 
be, should be reduced. People who work on 
structures having very low frequencies do see 
these effects creeping in.  I have seen actual 
records where these effects show up. 

Mr. Smith:  I am a little unhappy because I 
think the criteria that we are using differ from 
the criteria that you are using.  I would like to 
exchange information. 

• u ■ »o»uaai>T HrBTiMOnici   ima-iii-4£s 
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